Multicast Routing Algorithms for Sparse Splitting Optical Networks¹

Presenter: Anliang Cai

PhD candidate, Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR Email: caianliang@outlook.com Group Meeting, Friday, October 21, 2016

UCDAVIS

1. C. K. Constantinou, K. Manousakis, G. Ellinas, "Multicast routing algorithms for sparse splitting optical networks," *Comput. Commun.*, vol. 77, pp. 100–113, Mar. 2016.

Outline

- 1. Background
- 2. Problem Statement
- 3. Existing and proposed heuristics
- 4. Numerical results
- 5. Conclusions

Background

- One-to-many multicast applications data transmission from one source to multiple destinations
 - Telepresence, online teaching, ultra-highdefinition TV delivery, video conferencing, etc.
- Optical multicasting is more spectrally efficient than IP multicasting[^]
- Current networks may not have full multicast capability – sparse splitting

^ L. H. Sahasrabuddhe and B. Mukherjee, "Light-trees: optical multicasting for improved performance in wavelength routed networks," *IEEE Commun. Mag.*, vol. 37, no. 2, pp. 67-73, 1999.

Node Multicast Capabilities

- Multicast-capable (MC) node an input signal going through it can be dropped locally and/or switched to one, many, or all of its output ports
- Multicast-incapable (MI) node
 - Drop-or-continue (DoC) an input signal can be either dropped locally or switched to an output port
 - Drop-and-continue (DaC) enhanced over DoC with extra capability that an input signal can be split into two copies, one dropped locally and the other switched to an output port

MC Node Architecture

Fig. 1. MC node architecture utilized in the current work (adopted from [5]) (WC wavelength converters, TF: tunable filters, *W* wavelengths per link, node degree *N*).

[5]. X. Zhang, J. Y. Wei and C. Qiao, "Constrained multicast routing in WDM networks with sparse light splitting," *J. Lightw. Technol.*, vol. 18, no. 12, pp. 1917–1927, 2000.

DoC Node Architecture

Fig. 2. MI (DoC) node architecture utilized in the current work (adopted from [5]) (WC: wavelength converters, *W* wavelengths per link, node degree *N*).

DaC Node Architecture

Fig. 3. MI (DaC) node architecture utilized in the current work (*WC*: wavelength converters, *SW*: switches, *W* wavelengths per link, node degree *N*).

Example of Multicast Session

Routing Subgraph for a multicast session

Problem Statement

- Input
 - Network graph: $G = (V_G, A_G)$
 - Full wavelength conversion in each node
 - c_{ij} : the cost of arc [i, j] in A_G
 - Number of wavelengths on each network fiber (arc): W
 - Set of MC nodes: *MC*_{set}
 - Multicast session consisting of a source and k destinations: S, S = {s, D} = {s, d₁, d₂, ..., d_k}
- Output routing subgraph $RSG = (V_{RSG}, A_{RSG})$ with the minimum cost

Existing Heuristics

- DaC networks DaC and MC nodes
 - Member-only (MO)
 - No cycles permitted -> high cost
- DoC networks DoC and MC nodes
 - On-tree MC node first (OTMCF) [21]
 - Connect MI destinations to the closest MC nodes
 - Connect source to the MC nodes and MC destinations
 - Nearest MC node first (NMCF) [21] reversed procedure to OTMCF
 - Multicasting using splitters (MUS) [22]
 - Improvement over NMCF

[21]. C. Y. Hsieh and W. Liao, "All-optical multicast routing in sparse splitting WDM networks," *IEEE J. Sel. Areas Commun.*, vol. 25, no. 6, pp. 51–62, 2007.

[22]. S. Cho, T. J. Lee, M. Chung, and H.Choo, "Minimum cost multicast ro uting based on high utilization MC nodes suited to sparse-splitting optical networks," in *Proc. ICCSA*, 2006.

Proposed Heuristics

- MPH* based on minimum path heuristic (MPH)
- Sparse-splitting multicast routing heuristic (SSMRH)

MPH*

- 1. $RSG = (V_{RSG}, A_{RSG}) = (\{s\}, \emptyset), X = \{s\}, Y = D, c = 0$ $\forall i, j \in V_G: w_{ij} = 0$
- 2. $\forall v' \in D, v'' \in V_G$: Calculate $P_{v'v''} \rightarrow$ Derive $P_{v''v'}$ by reversing the arcs of $P_{v'v''}$
- 3. While $(Y \neq \emptyset)$
 - (a) Find $P_{uv}, u \in X, v \in Y: c_{P_{uv}} \leq c_{P_{u^*v^*}}, \forall u^* \in X, v^* \in Y$ (b) $\forall v' \in V_{P_{uv}}: \text{ If } (v' \in MC_{set}) X \leftarrow X \cup \{v'\}$ (c) If (DaC = 1)(1) $X \leftarrow X \cup \{v\}$ (2) If $(u \notin MC_{set}) X \leftarrow X/\{u\}$ (d) $RSG \leftarrow RSG \cup P_{uv}$ (e) $c \leftarrow c + c_{P_{uv}}$ (f) $\forall [v', v''] \in A_{P_{uv}}: w_{ij} \leftarrow w_{ij} + 1$ (g) $Y \leftarrow Y/\{v\}$

DoC Network Example of MPH*

Other Examples

 MPH* as well as the existing algorithms have improved performance if specific MC nodes are added in the destination set

Fig. 8. Improving the performance of MPH* by adding an MC node in the destination set.

SSMRH

1. X = D

- 2. Apply *base* heuristic for destination set $X : \rightarrow RSG$, $c, w_{ij} \forall i, j \in V_G$
- 3. $\forall u \in MC_{set}$ and $u \notin V_{RSG}$:
 - (a) $X \leftarrow X \cup \{u\}$
 - (b) Apply *base* heuristic for destination set X: → RSG{u}, c{u}, w_{ij}{u} ∀i, j ∈ V_G
 (c) X ← X/{u}

4.

(a) Find $v \in MC_{set}$ and $v \notin V_{RSG}$: $c\{v\} \le c\{v^*\}, \forall v^* \in MC_{set}$ and $v^* \notin V_{RSG}$

(b) If $c\{v\} \ge c$, Stop. Else Continue

- 5. $RSG = RSG\{v\}, c = c\{v\}, w_{ij} = w_{ij}\{v\} \ \forall i, j \in V_G$
- 6. $X \leftarrow X \cup \{v\}$
- 7. Return to Step 3

Test Conditions

- Test networks: USNET, NSFNET, and 18 randomly created networks
- Link cost varies from 1 to 1000
- Different k, the number of destinations and different z, the number of MC nodes which are placed at the nodes that have the largest degree[^]
- 500 multicast sessions
- MO and MUS were modified to support both networks while OTMCF and NMCF were applied without any changes

^ S. W. Wang, "Allocation of light splitters in all-optical WDM networks with sparse light splitting capabilities," *Telecommun. Syst.*, vol. 52, no. 1, pp. 261–270, 2013.

Performance Metrics

$$c_{H}^{S} = \sum_{[i,j] \in A_{RSG_{H}^{S}}} w_{ij}^{H,S} c_{ij} \qquad \overline{c}_{H} = \frac{1}{l} \sum_{i} c_{H}^{S_{i}} \quad i = 1, \dots, l$$
$$I_{H} = 100 \times \frac{\overline{c}_{H} - \overline{c}_{opt}}{\overline{c}_{opt}}$$
$$SO_{H} = 100 \times \frac{\text{number of suboptimal } RSG \text{ s}}{500}$$

- *I_H* is the extra average cost of heuristic H compared to the optimum
- SO_H is the percentage of the cases where heuristic H fails to find the optimal solution

Numerical Results

Evaluation on the USNET graph.

- SSMRH performs the best for all cases and close to optimum
- SSMRH performs the best in terms of the percentage of the derived optimal solutions

	Z	k	C opt	C_{MUS}	$\overline{c}_{\text{SSMRH}}$	I _{MUS}	I _{SSMRH}	SO _{MUS}	<i>SO</i> _{SSMRH}
DoC	4	3 6 9 12	7204,6 12454,2 16972,7 21408,8	7452,3 12902,9 17466,2 21881	7205,3 12462,0 16985,6 21422	3,44 3,60 2,91 2,20	0,01 0,06 0,08 0,06	26,4 44,4 51,4 56,4	0,4 3,2 6,0 3,6
	8	3 6 9 12	6477,1 10227,2 13178,0 15908,6	6679,2 10614,0 13607,5 16360	6483,4 10244,6 13197,5 15924	3,12 3,78 3,26 2,83	0,10 0,17 0,15 0,09	35,6 53,2 62,2 70,6	2,0 6,2 10,8 9,2
	12	3 6 9 12	6182,0 9295,3 11680,2 13773,5	6378,5 9682,3 12206,4 14334	6184,0 9310,7 11692,1 13784	3,18 4,16 4,51 4,07	0,03 <mark>0,17</mark> 0,10 0,07	37,8 58,4 70,2 67,8	1,6 5,8 5,8 5,2
		Avg	12063 , 5	12463, 7	12074, 6	3, 42	0 , 09	52 , 87	4, 98
DaC	4	3 6 9 12	6205,5 9303,9 11484,2 13397,2	6340,2 9804,6 12286,0 14505	6211,6 9383,4 11686,9 13749	2,17 5,38 6,98 8,27	0,10 0,85 1,77 <mark>2,63</mark>	23,4 57,4 79,0 90,0	2,2 18,8 45,4 63,6
	8	3 6	6127,7 9113,5	6317,7 9622,5	6129,4 9144,3	3,10 5,59	0,03 0,34	35,6 67,6	1,4 10,6
		9 12	11183,2 13011,2	12002,4 14168	11273,4 13161	7,33 8,89	0,81 1,15	85,6 <mark>95,0</mark>	29,6 46,6
	12	3 6 9 12	6043,7 8921,1 10927,3 12681,8	6214,7 9276,1 11441,6 13271	6044,2 8927,9 10940,9 12700	2,83 3,98 4,71 4,65	0,01 0,08 0,12 0,14	37,2 66,8 79,2 83,4	0,6 3,2 6,8 12,2
		Avg	9866 , 7	10437, 5	9946 , 0	5, 3	0 , 7	66 , 7	20 , 1

Numerical Results (Cont.)

Table 2

Evaluation on the NSFNET graph.

	Z	k	[¯] C _{opt}	$\overline{c}_{\text{existing}}$	<i>c</i> _{SSMRH}	<i>I</i> _{existing}	I _{SSMRH}	SO _{existing}	SO _{SSMRH}
	3	2 4 6 8	3499,2 5949,9 8044,8 9837,0	3595,8 (MUS) 6388,2 (MUS) 8674,5 (MUS) 10516,5 (MUS)	3499,2 5949,9 8046,0 9838,2	2,76 7,37 7,83 6,91	0,00 0,00 0,01 0,01	11,60 34,20 <mark>38,60</mark> 31,20	0,00 0,00 0,40 0,20
DoC	6	2 4 6 8	3335,4 5386,2 6884,7 8094,6	3408,6 (MUS) 5655,3 (OTMCF) 7044,6 (OTMCF) 8237,4 (OTMCF)	3335,4 5388,0 6887,4 8096,4	2,19 5,00 2,32 1,76	0,00 0,03 <mark>0,04</mark> 0,02	11,60 37,20 34,40 33,40	0,00 0,40 <mark>1,00</mark> 0,40
	3	Avg 2 4 6 8	6379, 0 3202,5 4776,9 5904,0 6767,1	6690, 1 3286,5 (MUS) 5123,7 (MUS) 6508,8 (MO) 7584,6 (MO)	6380 , 1 3202,5 4789,8 5937,3 6837,0	4 , 52 2,62 7,26 10,24 12,08	0 , 01 0.00 0,27 0,56 1,03	17 , 04 14,60 42,80 63,60 73,20	0 , 30 0,00 4,40 11,20 20,60
DaC	6	2 4 6 8	3185,4 4732,2 5828,7 6636,9	3285,3 (MUS) 5115,3 (MUS) 6266,7 (MO) 7174,2 (MO)	3185,4 4737,6 5841,0 6675,6	3,14 8,10 7,51 8,10	0.00 0,11 0,21 0,58	19,00 53,40 62,00 70,60	0,00 2,00 5,00 15,40
		Avg	5129 , 2	5543, 1	5150 , 8	7, 38	0, 35	49 , 90	7, 33

Performance Metrics (Cont.)

$$\begin{aligned} \mathcal{I}_{H}^{j} &= \frac{1}{3} \sum_{i} \left(100 \times \frac{\overline{c}_{H}^{j}[i] - \overline{c}_{SSMRH}^{j}[i]}{\overline{c}_{SSMRH}^{j}[i]} \right), \quad i = \frac{n}{10}, \frac{2n}{10}, \frac{3n}{10} \\ \mathcal{J}_{H} &= \frac{1}{18} \sum_{j} \mathcal{I}_{H}^{j}, \quad j = 1, \dots, 18 \end{aligned}$$

- *I*^j_H gives the average value of the % relative increase of the average cost compared to SSMRH for heuristic H and network *j*
- \mathcal{J}_H is the average value of \mathcal{I}_H^j over all randomly created networks

Numerical Results (Cont.)

Table 3

Evaluation on the randomly created networks.

- SSMRH performs best
- For the base heuristics of DoC case, OTMCF and MUS have the best performance
- For the base heuristics of DaC case, MPH* gives results closer to the ones obtained by SSMRH

		Z	\mathcal{J}_{MO}	$\mathcal{J}_{\mathrm{MPH}^*}$	\mathcal{J}_{OTMCF}	\mathcal{J}_{NMCF}	$\mathcal{J}_{\mathrm{MUS}}$
DoC	Act. cost	$\frac{n}{10}$	72,12	14,25	6,26	33,64	9,60
		<u>2n</u> 10	76,41	10,63	6,77	23,64	6,87
		<u>3n</u> 10	72,27	8,66	<mark>6,</mark> 58	15,71	5,56
		Avg	73,60	11,18	6,54	24,33	7,34
	W. usage	$\frac{n}{10}$	39,33	15,14	8,47	25,10	11,06
		<u>2n</u> 10	41,03	11,54	8,97	19,57	8,02
		<u>3n</u> 10	39,96	8,89	10,59	14,03	6,25
		Avg	40,11	11,86	9,34	19,57	8,44
DaC	Act. cost	<u>n</u> 10	17,45	3,11	28,91	61,81	4,56
		<u>2n</u> 10	13,22	3,54	20,37	39,24	5,87
		<u>3n</u> 10	9,97	3,46	16,29	26,20	5,97
		Avg	13,55	3,37	21,86	42,42	5,47
	W. usage	<u>n</u> 10	8,16	2,70	40,80	61,67	5,75
		<u>2n</u> 10	6,81	3,41	27,88	40,22	7,52
		<u>3n</u> 10	6,29	3,62	23,75	27,59	7,59
		Avg	7,09	3,24	30,81	43,16	6,96

Conclusions

- Investigated the problem of multicast routing for DaC and DoC networks with sparsesplitting capabilities
- Proposed ILP formulation and heuristics
 - The proposed algorithms achieve an important decrease of the average cost of the derived solutions, compared to existing algorithms
 - The proposed algorithms obtain the optimal solution for the majority of the investigated cases

Thank you.

Questions or comments?

Presenter: Anliang Cai

PhD candidate, Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR Email: caianliang@outlook.com

Group Meeting, Friday, October 21, 2016

