Application aware converged access network

Divya Chitimalla
Architecture

OLT

ONU

Fixed clients

Mobile clients
Description about architecture

- PON architecture supports both fixed users and small cells
- NGFI is striving for traffic dependent, packet based fronthaul
- PON can be used as fronthaul for next general packet based fronthaul
- There is need for intelligent resource allocation that takes into account various client needs
- This study focuses on QoE aware resource allocation in LTE (wireless) and also fronthaul bandwidth provisioning based on client demands
- Applications considered are video streaming, video conference since they take up major access resources.

Two level bandwidth dimensioning

- Resources are allocated in wireless domain using application information to maximize the QoE of users
- There algorithms are considered to achieve this
- Skype/Youtube based adaptive streaming is incorporated
- Each profile is made of certain resolution and frames per second
- Each profile is associated with an empirical MoS
- This information is made available at the MAC scheduler (could be centralized or independent) to allocate resources such that overall QoE is improved
- Once the wireless resources are allocated, fronthaul can be dimensioned for traffic/QoE demand
Supporting fronthaul standards

- **Interface II** between QAM+Multi-antenna mapping and Resource mapping by NGMI, can be packetized and traffic dependent
- Next generation fronthaul interface by China mobile is proposed to be Ethernet based
- IEEE workgroup 1903.4 is working on radio over Ethernet
- The proposed scenario also works for full fledged eNodeB's which backhaul the traffic to core network

Next Generation Mobile Networks 5G white paper https://www.ngmn.org/5g-white-paper.html
IEEE workgroup 1904.3 on Radio over Ethernet
Skype profile levels

- Skype uses video adaptation based on network state
- Supported resolutions: 19200, 76800, 307200
- Supported frame rates: 5 to 28 fps
- Required data rates: 320 kbps to 27.6 mbps
- MoS is calculated using empirical formula using above parameters
- MoS ranges from 2.9 to 4.7
- Mobile and fixed clients using adaptive streaming applications are classified into 3 types based on minimum acceptable MoS
Resource allocation problem

- Given UE and cell association, client type and channel condition for each UE, find out the resource allocation such that it maximizes overall QoE of the system
- Constraints: total resource blocks, minimum acceptable MoS for each client type
- Objective: Cumulative MoS
- System: LTE 20 MHz, Rayleigh fading channel
Fading channel TBS assignment

<table>
<thead>
<tr>
<th></th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2536</td>
<td>2536</td>
<td>2600</td>
<td>2600</td>
<td>2664</td>
<td>2664</td>
<td>2728</td>
<td>2728</td>
<td>2728</td>
<td>2792</td>
</tr>
<tr>
<td>1</td>
<td>3368</td>
<td>3368</td>
<td>3368</td>
<td>3496</td>
<td>3496</td>
<td>3496</td>
<td>3624</td>
<td>3624</td>
<td>3624</td>
<td>3624</td>
</tr>
<tr>
<td>2</td>
<td>4136</td>
<td>4136</td>
<td>4136</td>
<td>4264</td>
<td>4264</td>
<td>4264</td>
<td>4392</td>
<td>4392</td>
<td>4392</td>
<td>4584</td>
</tr>
<tr>
<td>3</td>
<td>5352</td>
<td>5352</td>
<td>5352</td>
<td>5544</td>
<td>5544</td>
<td>5544</td>
<td>5736</td>
<td>5736</td>
<td>5736</td>
<td>5736</td>
</tr>
<tr>
<td>4</td>
<td>6456</td>
<td>6456</td>
<td>6712</td>
<td>6712</td>
<td>6968</td>
<td>6968</td>
<td>6968</td>
<td>6968</td>
<td>7224</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7992</td>
<td>7992</td>
<td>8248</td>
<td>8248</td>
<td>8504</td>
<td>8504</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9528</td>
<td>9528</td>
<td>9912</td>
<td>9912</td>
<td>10296</td>
<td>10296</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11064</td>
<td>11448</td>
<td>11448</td>
<td>11832</td>
<td>11832</td>
<td>12216</td>
<td>12216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12576</td>
<td>12960</td>
<td>12960</td>
<td>13536</td>
<td>13536</td>
<td>13536</td>
<td>14112</td>
<td>14112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14112</td>
<td>14688</td>
<td>14688</td>
<td>15264</td>
<td>15264</td>
<td>15264</td>
<td>15840</td>
<td>15840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15840</td>
<td>16416</td>
<td>16416</td>
<td>16992</td>
<td>16992</td>
<td>17568</td>
<td>17568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18336</td>
<td>18336</td>
<td>19080</td>
<td>19080</td>
<td>19080</td>
<td>19080</td>
<td>19848</td>
<td>19848</td>
<td>19848</td>
<td>19848</td>
</tr>
<tr>
<td>12</td>
<td>20616</td>
<td>21384</td>
<td>21384</td>
<td>22152</td>
<td>22152</td>
<td>22920</td>
<td>22920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>23688</td>
<td>23688</td>
<td>24946</td>
<td>24946</td>
<td>25456</td>
<td>25456</td>
<td>25456</td>
<td>25456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>26416</td>
<td>26416</td>
<td>27376</td>
<td>27376</td>
<td>28336</td>
<td>28336</td>
<td>28336</td>
<td>28336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28336</td>
<td>28336</td>
<td>29296</td>
<td>29296</td>
<td>29296</td>
<td>29296</td>
<td>30576</td>
<td>30576</td>
<td>30576</td>
<td>30576</td>
</tr>
<tr>
<td>16</td>
<td>29296</td>
<td>30576</td>
<td>30576</td>
<td>30576</td>
<td>31704</td>
<td>31704</td>
<td>31704</td>
<td>31704</td>
<td>32856</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>32856</td>
<td>32856</td>
<td>34008</td>
<td>34008</td>
<td>35160</td>
<td>35160</td>
<td>35160</td>
<td>35160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>36696</td>
<td>36696</td>
<td>37888</td>
<td>37888</td>
<td>37888</td>
<td>37888</td>
<td>39232</td>
<td>39232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>39232</td>
<td>39232</td>
<td>40576</td>
<td>40576</td>
<td>40576</td>
<td>40576</td>
<td>42368</td>
<td>42368</td>
<td>42368</td>
<td>43816</td>
</tr>
<tr>
<td>20</td>
<td>42368</td>
<td>42368</td>
<td>43816</td>
<td>43816</td>
<td>45352</td>
<td>45352</td>
<td>45352</td>
<td>45352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>45352</td>
<td>46888</td>
<td>46888</td>
<td>46888</td>
<td>48936</td>
<td>48936</td>
<td>48936</td>
<td>48936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>48936</td>
<td>48936</td>
<td>51024</td>
<td>51024</td>
<td>51024</td>
<td>51024</td>
<td>52752</td>
<td>52752</td>
<td>52752</td>
<td>55056</td>
</tr>
<tr>
<td>23</td>
<td>52752</td>
<td>52752</td>
<td>55056</td>
<td>55056</td>
<td>55056</td>
<td>55056</td>
<td>57336</td>
<td>57336</td>
<td>57336</td>
<td>57336</td>
</tr>
<tr>
<td>24</td>
<td>55056</td>
<td>57336</td>
<td>57336</td>
<td>59256</td>
<td>59256</td>
<td>59256</td>
<td>59256</td>
<td>59256</td>
<td>61664</td>
<td>61664</td>
</tr>
<tr>
<td>25</td>
<td>57336</td>
<td>59256</td>
<td>59256</td>
<td>61664</td>
<td>61664</td>
<td>61664</td>
<td>61664</td>
<td>61664</td>
<td>63776</td>
<td>63776</td>
</tr>
<tr>
<td>26</td>
<td>66592</td>
<td>68808</td>
<td>68808</td>
<td>71112</td>
<td>71112</td>
<td>71112</td>
<td>73712</td>
<td>73712</td>
<td>73712</td>
<td>75376</td>
</tr>
</tbody>
</table>
MCKP - Dynamic Programming Algorithm

- This problem can be modelled as a multiple choice knapsack problem and dynamic programming approach can be used to perform resource allocation.
- For every UE, weights and profits are determined based on their client type and channel condition.
- Weight is the number of resource blocks needed to achieve a certain video rate and hence certain MoS.
- Profit is the incremental MoS achieved by using certain profile level.
- Steps:
 - For every UE, find out channel condition (every TTI), based on which maximum coding rate is calculated.
 - Using this coding rate, find out the acceptable weights and profits for each UE.
 - For every UE, pick one profile level (w,p) such that cumulate MoS is maximized.
Modified Round Robin Algorithm

- Allocate resources such that minimum acceptable profiles are supported for all UE
- Calculate allocated budget based on what ever is allocated
- Choose a random UE number
- Allocate best profile within remaining budget that increases MoS of UE
- Repeat this in a round robin fashion until all the resources are allocated or all UEs are visited
Water-filling algorithm

- Allocate resources such that minimum acceptable profiles are supported for all UE
- Sort the UEs in decreasing channel conditions (coding rate)
- Calculate allocated budget based on what ever is allocated
- Select the UE with maximum coding rate
- Allocate best profile within remaining budget that increases MoS of UE
- Repeat this in a descending order of channel rates until all the resources are allocated or all UEs are visited
Results

- ... still working on them ...
Deliverables

- Results for MCKP algorithm
- Results for bandwidth allocation in fronthaul/backhaul part
- Better model/algorithms?