Priority-aware Scheduling for Packet Switched Optical Networks in Datacenter

Speaker: Lin Wang
Research Advisor: Biswanath Mukherjee
PSON architecture

- Switch architectures and centralized controller
- Scheduling algorithm design
- Traffic generation
- Simulation set up
- Results evaluation
- Current work
A control plane manages tunable transmitters, photonic framers and space switches for data plane with optical switch fabrics (AWGR)
PSON data plane (with optical switch fabric)

180 x 180 Configuration

- A control plane manages tunable transmitters, photonic framers and space switches for data plane with switch fabrics (AWGR)

Space switch: Optical path switch to switch optical signal between module and AWGR at sub micro-second speed.
Scheduling Algorithm for PSON

- Iterative Round Robin algorithm.

Step 1: Request.

Step 2: Grant.

Step 3: Accept.
Scheduling Algorithm for PSON

- **Step 1. Request**
 Each unmatched input sends a request to every output for which it has a queued cell.
Scheduling Algorithm for PSON

Step 2: Grant.
If an output receives multiple requests, it chooses the one that appears next in a fixed RR schedule starting from the highest priority element. The grant pointer g_i is incremented (module N) to one location beyond the granted input if and only if the grant is accepted in step 3 of the first iteration.
Scheduling Algorithm for PSON

Step 3: Accept.
If an input receives multiple grants, it accepts the one that appears next in a fixed, round-robin schedule starting from the highest priority element. The pointer a_j is incremented (modulo N) to one location beyond the accepted output. The accept pointers a_i are only updated in the first iteration.
Scheduling Algorithm for PSON

- **Priority-aware scheduling algorithm.**
- Modify Iterative Round Robin Scheduling
- Each ingress module maintains status information and gets priority values for \(n \) VoQs based on their status information. The priority value is calculated based on a combination of four strategies: longest queue first (LQF), largest number of packets first (LNPF), oldest packet first (OPF), and less switching first (LSF) using the following weighted function:

\[
W_{ij} = l_{ij} * w_l + p_{ij} * w_p + d_{ij} * w_d + s_{ij} * w_s
\]

- We do not send all VoQ request in each module but choose first \(k \) VoQs with highest priority.
Scheduling Algorithm for PSON

Start

For each ingress module, get n VoQs' status info and calculate W_{ij}.

For each ingress module, select first k VoQs and send requests to egress module.

Collect all requests for each egress module.

For each egress module, select the request with highest priority, and send grant to it.

For each ingress module, collect all grants.

Select the grant with highest priority and notify modules to transmit packets in next time slot.

End
Traffic generation

- Each of module receives the input traffic generated by 80 simulated servers.
- The amount of traffic load is normalized and can be scaled from 0 to 1.
- Packet length in real scenarios is mostly found to be a bimodal distribution around 40 bytes and 1500 bytes. [1]-[3]

Traffic generation (Cont.)

- Packet arrival times are modeled matching ON/OFF periods.
- ON/OFF periods follow Pareto distribution.
- ON periods follow the same length distribution regardless of load.
- OFF periods is proportional to the chosen simulation load value.

Results and analysis

Graphs showing:
- Throughput vs. Offered load
- Average delay vs. Offered load
- Packet loss ratio vs. Offered load
Current work

- **Scheduling algorithm design**
 - Photonic Frames can have variable lengths as shown below.
 - Each module (Node) can have multiple Tx (or Rx).
 - Consider other scheduling methods besides round robin.

- **Performance Evaluation**
 - Effect of frame size
 - Effect of buffer size
 - Effect of offset time
THANK YOU!

amlwang@ucdavis.edu