A novel time-aware rapid data evacuation heuristic algorithm for large-scale disasters in optical cloud networks

Presenter: Yongcheng(jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University, China Email: liyongcheng621@163.com

Group Meeting, Apr. 08 2016

- 1. Background
- 2. Rapid data evacuation for large-scale disasters
- 3. Problem statement
- 4. Rapid data evacuation schemes
- 5. Conclusions

Background

- Many famous company have given there *cloud services* for the customers in the world wide
- Cloud services are delivered by *datacenter (DC) networks*, which provides the storages of many important contents
- The datacenter networks may be damaged by natural (i.e., hurricane and earthquake) or man-made (i.e., weapons of mass destruction attacks) disasters, which will lead to the *service disruptions* and *permanent data loss*
- In case of *large-scale disasters*, there is a risk that multiple DCs are damaged and the replicas of a content are within the disaster region and are vulnerable to loss

Rapid Data evacuation (RDE) for large-scale disaster

- Many techniques can be used to forecast an upcoming disasters like the example of an earthquake
- According to a received warning and the predicted time, we can transfer the vital data to the other safe datacenter
- The key problems are *where* and *how* to evacuate vulnerable contents before the disaster occurs

Problem statement

- Objective: Minimize the total data transfer delay of the data evacuation
- Inputs:
 - Topology
 - Disaster region
 - Damaged and safe datacenters
 - Storage capacity of each datacenter
 - Contents in different datacenters
 - Link capacity
- Constraint
 - Evacuation deadline

Problem statement

- Disaster Mapping phase
 - The predicted span of the disaster is mapped over the physical network topology
 - Determine the disaster zone and identify the set of damaged and safe DCs
- Content Selection phase
 - Obtain the set of vulnerable contents, as candidate for evacuation
- Source/Destination DC Selection, Path Selection, and Scheduling phase
 - Delay Computation phase
 - path-computation delay + connection-setup delay +data-transmission delay + data-propagation delay
 - Scheme of Path Selection and Scheduling phase

Delay Computation

- path-computation delay
 - Time consumption of the path computation
- Connection-setup delay
 - control-message processing delay: $(n + 1) \times \eta$
 - control-message propagation delay: $l \times \mu$
 - switch-configuration delay: $(n+1) \times \beta$
- Transmission delay: F_C/B_P
- Propagation delay

l×μ

n is the number of hops on path. *l* is the distance of path. μ is the propagation delay per unit distance. η is processing delay. β is the switch configuration delay. *F_C* is the size of content C. *B_P* is the available bandwidth of the path P

Rapid data evacuation schemes

- Nearest Rapid-Data-Evacuation Algorithm (NRDE)
 - Evacuate data only to nearest DC with the shortest path
 - Advantage: simplicity
 - Disadvantage: contents in the same DC will be delivered on the same shortest path to the same DC, which is high time consumption

Rapid data evacuation schemes

- Least Delay Rapid-Data-Evacuation Algorithm (HRDE)[1]
 Content 1
 - Multi-path vs Single-destination node
 - Calculate the data transfer delay of each path
 - Select the path with minimum data transfer delay,

Content 2

Content 3

[1] S. Ferdousi, M. Habib, M. Tornatore, and B. Mukherjee, "Rapid data evacuation for large-scale disasters in optical cloud networks," in *Proc. OFC 2015*.

- Example
 - Divide the entire content into serval pieces
- Advantage
 - Delivery the smaller size sub content by different path to reduce the data transfer delay
- Problem
 - How to divide the content?
- Solution
 - Bisection algorithm
 - Time-aware algorithm

- Bisection Sub-Content Rapid-Data-Evacuation Algorithm (B-SCRDE)(2-disjoint shortest path)
 - Divide one content into two sub-content with equivalent size

- Time-aware Sub-Content Rapid-Data-Evacuation Algorithm (TA-SCRDE)
 - For each destination DC, there is a path-pair
 - B: (P1,P2) D:(P3,P4)
 - Divide one content into two sub-content with different size according to the maximum time delay of each path
 - Principle 1: if the delay time of each path is zero, the content is divided into two equal-size sub-contents

- Time-Aware Sub-Content Rapid-Data-Evacuation Algorithm (TA-SCRDE)
 - Principle Two: if the delay time of one path is 0 and the other isn't, we will evacuate the entire content by the path with 0 delay time
 - Principle Three: if both of the paths have a delay time, we will divide the content by the following formulation

- Time-aware Sub-Content Rapid-Data-Evacuation Algorithm (TA-SCRDE)
 - For each destination node, there is a path-pair

• B: (P1,P2) D:(P3,P4)

Combination-content

Risk of data loss in the evacuation

Risk of poster-disatser

Waster of link capacity

1

2

3

Combination-content

- Motivation
 - The delivered content may be lost due to the poster-disaster
 - We must consider the risk of each datacenter
 - Protect the content by using multi-replicas
- Advantage
 - Multi-replicas which means a lower risk
- Disadvantage
 - Cost a longer time to delivery all the content
- Trade-off between data transfer delay and risk
- Open Problems:
 - The number of replicas
 - The combination of different weight and size contents

P1

P4

Combination-content

- Multi-Replicas Combination-Content Rapid-Data-Evacuation Algorithm (MR-CCRDE)
 - Combine the different weight and different size contents
 - Delivery them to the different risk DCs
 - Different from the RDE without risk, it is complex due to addition degree of risk and the combination of different contents

С

F

risk1

risk2

- It is an multi-objectives optimization
- Considering multi-cast/multi-path

Conclusion

Schemes	Consideration					
	Time efficiency	Protection	Multi- path	Sub- content	Combination- content	Poster-disaster
N-RDE	x	x	х	х	X	Х
LD-RDE	\checkmark	x	\checkmark	x	x	x
B-SCRDE/TA- SCRDE	\checkmark	x	\checkmark	\checkmark	x	x
MR-CCRDE	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark

Thank you for your attention!

Presenter: Yongcheng(jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University, China Email: liyongcheng621@163.com

Group Meeting, Apr. 08 2016

19

