
Speaker: Lin Wang

Exploiting Inter-Flow Relationship for Coflow

Placement in Datacenters

Research Advisor: Biswanath Mukherjee

XS Huang, et al., “Exploiting Inter-Flow

Relationship for Coflow Placement in Datacenters”, APNET

Aug, 2017.



Group meeting 12/8/2017

Introduction

• Coflow

• Represents a collection of independent flows that share a common

performance goal.

• Coflow’s performance depends on its slowest flow.

• Coflow aware scheduling benefits distributed data processing

applications.

• State-of-arts

o Most of current work focus on optimizing the network scheduling

algorithm to improve coflows’ performance.

o They assume predetermined coflow placement, i.e. the endpoint

locations of a Coflow are preset.

o But Coflow’s placement can be more flexible in practice.



Group meeting 12/8/2017

Coflow placement challenge

• Challenge for inter-flow relationship in a Coflow

o E.g., in a one-to-many Coflow, all constituent flows share the

same sender location.

o In many-to-many Coflow, the relationship is even more complex.

Because any member flow shares its two ends points with two

different groups of flows.

o Thus, we need to take care of such inter-flow relationship for

placement decisions.



Group meeting 12/8/2017

2D Placement for Coflow

• Network Model

o Topology designs such as Fat-tree or Clos enable full bisection

bandwidth in datacenters.

o Assume non-blocking N-port switch with link bandwidth B.

o Switch ports are connected to nodes, which can be host machines or

ToR switches.

o Only edge links are congested and core is congestion free.

• Scheduling objective

o Minimize Coflow completion time (CCT). It is the duration to finish all

flows in a Coflow to speed up application level performance.

• Scheduling objective

o Minimize Coflow completion time (CCT). It is the duration to finish all

flows in a Coflow to speed up application level performance.



Group meeting 12/8/2017

2D Placement for Coflow

• Problem Statement

o K Coflows arrive at various time . We want to decide the placement for

each new-arrived Coflow.

o The placement of a Coflow can be represented by mapping functions

o We assume when a Coflow arrives, its traffic demand D is available.

o Thus, we need to decide the placement of a new Coflow given the

existing previous Coflows, so that the sum of all Coflows’ CCTs is

minimized.



Group meeting 12/8/2017

2D Placement for Coflow

• Problem Analysis

o The sum of CCTs is jointly determined by Coflow’s placement and the

network scheduling during runtime.

o First, Coflows’ placement decides the optimal sum of CCTs achievable

by any network scheduling policy.

o Second, after Coflows are placed, the sum of CCts will be further

determined by the network scheduling poicy, which arbitrates

bandwidth allocation for each Coflow.

o This paper focus on finding Coflow placement that minimizes the sum

of CCTs under optimal network scheduling.

o Given specific placement, finding the optimal scheduling policy to

minimize the total CCTs is NP-hard.



Group meeting 12/8/2017

Motivation Example 1



Group meeting 12/8/2017

2D Placement for Coflow

• Observations



Group meeting 12/8/2017

Motivation Example 2



Group meeting 12/8/2017

2D Placement for Coflow

• First step

o Calculate the traffic

demand requested on

each endpoints for

Coflow to place.

• Second step

o 2D-Placement considers 

each sender (or receiver) 

in the descending order 

of their requested 

demand, and place the 

sender (or receiver) onto 

the input (or output) port 

with the minimum traffic 

load.

• Complexity

o O(n^2).



Group meeting 12/8/2017

Simulation

• Apply two network schedulers

o Varys assume accurate Coflow traffic request.

o Aalo tries to approximate Varys with unknown sizes so as to

tolerate error in the requested demand.



Group meeting 12/8/2017

Communications in Cluster Applications

• Dataflow pipelines

o MapReduce

Each mapper reads its input from the distributed file 

system (DFS), performs user-defined computations, 

and writes intermediate data to the disk; each 

reducer pulls intermediate data from different 

mappers, merges them, and writes its output to the 

DFS, which then replicates it to multiple destinations. 

o Dataflow with Barriers

A dataflow pipeline with multiple stages uses 

MapReduce as its building block. Consequently, there 

are barriers at the end of each building block, and 

this paradigm is no different than MapReduce in 

terms of communication. 



Group meeting 12/8/2017

Communications in Cluster Applications

• Dataflow pipelines

o Dataflow without Explicit Barriers.

Some data flow pipelines do not have explicit 

barriers and enable higher-level optimizations of 

the operators. A stage can start as soon as some 

input is available. Because there is no explicit 

barrier, barrier-synchronized optimization 

techniques are not useful. 

o Dataflow with Cycles

Traditional dataflow pipelines unroll loops to 

support iterative computation requirements. 

However, implicit barriers at the end of each 

iteration allow MapReduce-like communication 

optimizations in cyclic dataflows. These 

frameworks also provide communication 

primitives like broadcast and many- to-one 

aggregation that, unlike shuffle, push data to a 

set of already known destinations. 



Group meeting 12/8/2017

Communications in Cluster Applications

• Dataflow pipelines

o Bulk Synchronous Parallel 

Some data flow pipelines do not have explicit 

barriers and enable higher-level optimizations of 

the operators. A stage can start as soon as some 

input is available. Because there is no explicit 

barrier, barrier-synchronized optimization 

techniques are not useful. 

o Partition-Aggregate 

User-facing online services (e.g., search results in 

Google or feeds in Facebook) receive requests 

from users and send it downward to the workers 

using an aggregation tree. At each level of the 

tree, individual requests generate activities in 

different partitions. Ultimately, worker responses 

are aggregated and sent back to the user within 

strict deadlines. Responses that cannot make it 

within the dead- line are either left behind [26] or 

sent later asynchronously 



Group meeting 12/8/2017

amlwang@ucdavis.edu


