A viaclilic Localllilliy—uastcU
Framework for Building
Application Failure Prediction
Models

Tanjila Ahmed

E—
—
—
—

IIIIIIIIIIIIIIIIIIIIII

»QObjective

»Motivation

>Why F2PM?

»F2PM Framework

> Steps to Implement F2PM
»Experimental Setup
»Results

»Conclusion

Outline

UCDAVIS

1. A. Pellegrini, P. D. Sanzo, and D. R. Avresky, “A Machine Learning-based
Framework for Building Application Failure Prediction Models” , Parallel and
Distributed Processing Symposium Workshop (IPDPSW), May 2015.

/ I UCDAVIS

Framework for building Failure Prediction Models (F?2PM), a Machine Learning-based
Framework to build models for predicting the Remaining Time to Failure (RTTF) of applications
In the presence of software anomalies.

Creates a knowledge base upon no of features.

Application independent.

Performs a feature selection to identify best features.

Generated models can be compared using set of metrics produced.

Experimental results of successful application of the model.

/_\ UCDAVIS

Motivation

« Anomalies: memory leaks, unterminated threads, unreleased locks, file
fragmentation.

Incremental
Accumulated)
loss in
anomaly Ex o]g!

performance

* Proactive Rejuvenation which preventively force the application or hosting system
to a clean slate before predicted crash.

—— UCDAVIS

A framework, which is able to autonomously derive a set of different prediction models,
enabling user to select the best-suited one.

« Operates in a non-intrusive way
» Exploits only system level features
« Sufficient no of observations are collected in advance of the monitored phenomena

* No of system features are monitored and their values are recorded while the
application responsible for anomalies run

- When the user defined condition for failure is met, F?PM logs the occurrence time &
system is restarted

« Collected data are used for building and validating a number of models generated by
using different ML algorithms

« Uses: VM and cloud computing

/_\ UCDAVIS

F2PM’s Goal : Build optimized ML models for failure
prediction

Input : Selected system feature
Condition: Failure conditions set by user
Output: RTTF

Steps to implement F2PM:

1. Initial System Monitoring

2. Data-point aggregation and added metrics
3. Features Selection

4. Model Generation and Validation

/ I

Correlation
Process

> Monitoring
Process

: Training Data Sets i o SEm—

}

Adding Derived
Metrics

Lasso Regularization
: g -
rocess

Applying Different
Lambda Values

|

R

Training Process
(MSP, SVM or other
ML technique)

}

[ML Model Validation |

Training Data Sets
after Feature Selection

2 (:ZD Prediction Models

Controller (VM) =

Fig. 1. F2PM Architecture

1. Initial system monitoring:

* this phase consists of collecting measurements of a no of system features
while system runs application generating anomalies.

» Every time system failure condition is met, a fail event is added to the data
history and system is restarted.

* This gives rise to a number of runs of system. Particularly, a given amount
of data, which would be sufficient to build ML models with a given
accuracy, has to be collected.

« Size of the dataset to be collected in this phase can be determined via the
set of metrics that allow the user to evaluate the accuracy of the produced
models

* |f estimated accuracy is not sufficient, further system runs can be executed

/mwﬂec%new—da{aiwmng set, and to produce new models.

UCDAVIS

1. Initial system monitoring:

Listed features are selected because, on
basis of them, measure effect on system of
kind of anomalies affecting application that
we are studying (i.e. memory leaks and
unterminated threads).

Output of this phase includes a set of row
data representing the evolution of the
system feature along a number of system
runs.

/ e —

Tgen is the timestamp denoting the elapsed time since
the system has started;

Tlep, is the number of active threads in the system;

M, seq 1s the amount of memory used by applications
running in the system,;

M¢sree 1s the amount of memory freely available for
usage by applications;

M hared 1s the amount of memory used for buffers shared
by applications;

My, 5 1s the amount of memory used by the underlying
operating system to buffer data;

M .qcheq 18 the amount of memory used to cache disk data;

SWseq 1s the amount of swap space, which is currently
used;

SWiree 1s the amount of swap space, which is currently
free;

CPU,s is the percentage of CPU time dedicated to
userspace processes;

CPU,,; is the percentage of CPU time occupied by user-
level processes with a positive nice value (lower
scheduling priority);

CPUsgys 1s the percentage of CPU time spent in kernel
mode;

CPU,;,1s the percentage of CPU time spent waiting for
a I/O operations to complete;

CPU,; isthe percentage of time a virtual CPU waits for a
real CPU while the hypervisor is servicing another
virtual processor;

CPU,;q is the percentage of CPU time spent doing un-
fruitful work (i.e., the system is underloaded).

2. Data-point aggregation and added metrics:

1. Aggregated data points are generated on the basis of a user-defined
time interval.

2. Each input data point (shown in black in the figure) is placed, on the
basis of the value of a feature, on the time axis.

3. All data points falling in the same time interval are used to generate one
aggregated data point.

Aggregated

} ° . > Time Axis
T Time Window 1 ‘[Time Window 2

VM started Original Datapoints will be included in TW 3

Fig. 2. Datapoint Aggregation

- UCDAVIS

2. Data-point aggregation and added metrics:

« adding some metrics to each the aggregated datapoint. Specifically, for
each system feature |, the slope is calculated according to the following
formula:

_Tgnd . m.g:tart

_ 7 j
slope; = :

n

» where x*"* and x{"* are the values of the feature j of the first and the
last original datapoint falling in the time interval

* |If system crashes due to memory exhaustion, SWused will start growing
faster when approaching crash point. Therefore, slope can be used
effectively to build the prediction model.

/_\ UCDAVIS

2. Feature Selection :

|dentifying those features having (incrementally) more impact (weight) in
prediction of the RTTF.

In statistics & machine learning, lasso is a regression analysis method that
performs both variable selection and regularization in order to enhance
prediction accuracy.

=S V(s 8,2,)) + AlIBIl
j=1

n is the number of data points from the aggregation step, Xj is a vector of
values of input features (independent variables) of each data point, yj is the
associated value of the dependent variable (RTTF) for the specific data
point

—
— . UCDAVIS
However, this is an optional step.

4. Model Generation and Validation

This phase aims at generating and validating a set of prediction models,
which are built by using the training sets produced in the previous phases.

Linear Regression

M5P

REP-Tree

Lasso as a Predictor

Support-Vector Machine

Least-Square Support-Vector Machine

\
/ : UCDAVIS

-~ ® Q0 T

For each model, the following metrics are provided:

1. Mean Absolute Prediction Error (MAE): it is the average of the
differences between predicted and real RTTF.

1 TL
MAE ==Y If, —ul,
n;:llf yil

where fi Iis predicted value, yi is observed value, and n is number of samples
In the validation set.

2. Relative Absolute Prediction Error (RAE): RAE normalizes total
absolute error by dividing it by total absolute error of the simple predictor.

Soiq | fi — il n
RAE = ==1 _1 |
2?21 |Y—yi|, Y—ﬂ;lyzl.

/_\ UCDAVIS

« Maximum Absolute Prediction Error (MAE): it is the maximum prediction
error, i.e. the maximum value in the set |fi — yi | for each sample i in the
validation set.

« Soft-Mean Absolute Prediction Error (S- MAE): it is calculated as the
MAE, except that when the value |[fi — yi | Is less a given threshold it is
considered to be equal to zero.

« Training Time: it is the time required by the learning method for building
the model.

« Validation Time: it is the time required for completing the validation of the
model, including the calculation of the above mentioned errors.

The above metrics provide the user with useful information for comparing the
different models produced by F2PM.

//—\ UCDAVIS

« A controlled experiment on a virtual architecture was carried out, which
was built on top of a 32-core HP ProLiant NUMA server. The server is
equipped with a Debian GNU/Linux distribution (kernel version 2.6.32-5-
amd64). VMware Workstation 10.0.4 is the virtual environment
hypervisor. All virtual machines of the experimental environment were

equipped with Ubuntu 10.04 Linux Distribution (kernel version 2.6.32-5-
amdo64).

« 2 different virtual machines (VM) were used. One VM runs our FMS (to
collect the hardware features), and generates the workload targeting the
second VM. The second VM hosts the application, experiencing
occurrence of anomalies.

« Multi-tier e-commerce web application that simulates a on-line book store,
following the standard configuration of TPC-W benchmark was tested

//—\ UCDAVIS

* The experiment was continuously run for one week, having an emulated
browsers continuously issue requests to the TPC-W server. Upon a crash,
VM hosting the TPC-W is automatically restarted, so as to start serving
again requests by emulated browsers as soon as possible.

\
/ ~- UCDAVIS

RESULTS

Number of Parameters Selected by Lasso
30 T L) 1 I U T T T

Selected Parameters

0 1 L L 1 1 L
10° 10 102 10° 104 108 108 107 108 10°

A Value

Fig. 4. Parameters selected by Lasso

¢ In Ol‘der tO evaluate the accuracy Of TABLE IL. SOFT MEAN ABSOLUTE ERROR—10% THRESHOLD

predICtlon mOdGIS, We Can See that the Using all parameters | Using only parameters selected by Lasso

best accuracy Is provided by REP-Tree. Awritm Eroreondy | Agoritm Error (eeondy
In comparison with REP-Tree, M5P "@&™" & |™w "
. . REP Tree 69.832 REP Tree 108.476
Increases the error in order of 10%. All st 1t swi 46354
other ML methods show higher errors. weo-w) asw fweo—w) w5
We note that this could be due to the — wwea-wy wsw o s
fact that both REP-Tree and M5P divide wwo-u) wsm | ooy s
the model space Iin smaller portions, — ieso-i) o |lsoa=i0 dson
. . Lasso (A = 107) 399.023 Lasso (A = 107) 399.023
and evaluate for each portion a different iswo=1) maw fwea=1w0 w0
Lasso (A = 107) 392.469 Lasso (A = 107) 392.469

linear approximation.

\
/ - UCDAVIS

* It IS evident that when using all TABLEIL TRANING Tive
param ete rS training timeS are Using all parameters | Using only parameters selected by Lasso

. . . Algorithm Error (seconds | Algorithm Error (seconds
S I g n Ifl Cantly h I g h e r. B a.S e d O n Linear Regression O(.3O : Linear Regression 0(.08 :
presented results, user can make a REP Tree 056 REP Trc o

choice between less time in training
or haV|ng a h|gher accuracy Of the TABLEIV. VALIDATION TIME

Using all parameters | Using only parameters selected by Lasso

p re d i Cti O n m Od e I . S i m i I arly, aS We Algorithm Error (seconds) | Algorithm Error (seconds)

can see In Table IV, more time Is S S v Rl S V-
required for validating prediction s 039 “s” 013

models when all parameters are
used.

\
/ * UCDAVIS

20

- One advantage of this approach is that F>PM can be used out of the box,
without any need for manual modification/intervention in applications.

* it can be customized by user according to a specific class of application
and/or type of anomalies.

- F2PM uses different machine-learning methods to generate models,

allowing users to decide, on basis of a set of metrics, the best suited one
for his needs.

- F2PM allows us to select prediction models for application failure, with
small training time and high accuracy.

/_\ UCDAVIS

o — UCDAVIS

22

