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Motivation
• Traffic classification is the categorizing of internet traffic according 

to various applications
• It is needed for network engineering, management, and control as 

well as other other analytics 

[1]



Motivation
• Traditional techniques for traffic classification include port and 

payload based analysis.
• Encrypted data and dynamic port assignments make it harder to 

correctly identify the type of applications [2].
• Using a combinations of techniques for supervised and 

unsupervised learning algorithms has shown promise for classifying 
internet traffic [3].

• We wanted to explore how a K-mean clustering algorithm could be 
used to classify internet traffic.  



Methodology Overview
• Capturing the trace of known applications
• Filtering out the noise to isolate the flow of interest
• Analyze patterns in the trace to grab all relevant features
• Feature Selection and clustering the data points
• Analyzing the error to determine the right number of clusters and 

fitting of the attributes
• Using those setting and data points as training data for another test 

set



K-Means Algorithm
Unsupervised Learning Methods :

AutoClass [4], k-means [5] and DBSCAN [6]

K-mean : is the simplest to implement and least memory intensive [7].
Working process of it is very fast and robust [7]. Usually k-mean is
widely used for both network anomaly detection [8,9] and traffic
classification [6,10]. In [6] the authors made a qualitative comparison
among above mentioned three unsupervised ML algorithms showing
based on both accuracy and model building time k-mean gives the best
solution for traffic classification.



K-Means Algorithm
• Implementation

• Run the parsed data through the K-means 
algorithm to form clusters based on random 
positioning of the centroids  

• Iterate through the positions of the centroids 
until they converge

• Determine the RMS error 
• Analysis

• Increase the number of centroids and until we 
see small changes in the RMS error.

• This will give us an estimate of the correct 
number of groupings.

K-Means Visualization



K-Means Algorithm
Using only k-mean algorithm is not sufficient for traffic classification.
Although it can group the traffic based on their flow features but cannot
identify the applications. Due to unavailability of labelled data and limitation of
k-mean to identify applications we decided to go for a semi-supervised ML
approach. Some of recent works [11,12] have shown some good progress using
this semi-supervised approach. Semi-supervised approach uses fewer labeled
data to predict traffic classes.



Training Set Vs Test Set
• By having a ground truth about the applications before running 

them through the K-means algorithm we can estimate the correct 
percentages in each cluster.

• We can’t know if these percentages correspond to the predicted 
application.

• So we use this data as a training set vs a test set of new known 
traces to see which cluster they fall into.

• This tell us type of application in each cluster



Result Generation Steps
Filtering 
traces

Searching 
pattern

Selecting 
Features

Fixing number 
of Centroids

Validating the 
prediction

Tools Used: Wireshark, Weka



Trace Filtering and Pattern Search
Filtering the traces meant removing everything other than specific application 
traffic in our wireshark capture.

1st approach : 
• Applied a series of protocol filters to remove frames when wireshark was open 

but the target applications weren’t  running.
• Removal of 50- 75 % of all frames and made our trace incomplete
2nd Approach
• Using local ip and application port based filters we picked up more frames but 

might have lost few important connections
• Still more accurate representation of the traffic being generated by the 

application.



Feature Selection
• We had originally parsed out 9 features that were distinguishable 

between all the traces
1. Number of Packets 
2. min/max/avg packet length
3. duration
4. min/max/avg inter-arrival time
5. protocol  

• Progressive selection
• With the applications we chose all 9 groupings seemed to give the 

best accuracy for the number of clusters.



Feature Selection

Table 1 : Percentage of actual 
groupings vs percentage of groupings 
with 1 -9 features added

Application Original 
grouping

Grouping using 
features
K=4

Grouping 
using features 
k=5

Online Games 33% 49% 41%

Facebook 
Messenger

31% 26% 29%

Youtube 21% 14% 15%

Download 13% 12% 9%

7%



K-Centroids
• The number of centroids was chosen based on an approximation method called the elbow 

graphing. 
• The number of centroids was increased from 2-7 to graphed vs Sum of Squared error in 

each cluster
• When the change noticeably slows down with the increase of centroids an elbow forms 

giving an approximation of the number of groupings

Fig. Elbow Graph 
Approximation of the number 
of Centroids



Accuracy of Predictions
• We were able to correctly match 3 out of the 4 applications with a 

moderate rate of accuracy.
• “Download” traces were mis-grouped with Youtube and Facebook 

Messenger. 
• This was most likely due to the filtering used in the trace and the 

type of download we were making.
• Similarities in used port (443 HTTPS) , protocol and long packet 

lengths. 
• These were our some of the most weighted feature selections.



Accuracy of Predictions
Applications Groups Test 1 : 

Youtube
Test 2 : 
Online 
Games

Test 3: 
Facebook 
Messenger

Test 4: 
Download

Youtube 0 64% 14% 13% 42%

Download 1 11% 12% 0% 8%

Online
Games

2 5% 49% 0% 9%

Facebook 
Messenger

3 20% 26% 87% 42%



Accuracy of Predictions
Applications Actual Testset 

Grouping
Predicted Testset 
Grouping

Actual number of flows
in testset

Predicted number of
flows in testset

Youtube 20.3% 25% 81 100

Download 19.8% 10% 79 39

Online Games 31.1% 37% 124 147

Facebook Messenger 28.8% 28% 115 113



Conclusion
Factors needed to be carefully tuned for accurate internet traffic class 
predictions : 

1. Large and diverse enough sample set to make sure you have enough 
data for groupings 

2. Filtering the traces to remove the noise is crucial in order to form a 
reliable baseline for your training set

3. Tuning the feature selection and the number of K-centroids can 
have drastic effects on the resulting groupings
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