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Quality of Transmission

* It 1s efficient to provision requests with high bandwidth requirement in
optical networks.

* Physical layer impairments (PLIs) must be considered (e.g. amplified
spontaneous emission (ASE) noise, crosstalk, optical filter concatenation,
and polarization mode dispersion (PMD)).

* Conventional Q-factor model is based on the true measurement of the
PLIs on a transparent optical network (not self-adaptive).

» Utilizing the neural network (NN), QoT data of previously established
connections can be analyzed to find a QoT decision with high accuracy,

which is independent from the PLIs and self-adaptive.
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Data-driven QoT Approach

* First proposed in [1]: a static system, a single wavelength (simple model)

Extended in this paper:
* The connections arrive and terminate in a dynamic fashion

* On a impairment-aware unicast/multicast routing and wavelength assignment
(IA-UMC-RWA) system in which multiple wavelengths are present

More details:

* Training data are generated from the dynamic IA-UMC-RWA algorithm
e Accuracy is evaluated by comparing the QoT decisions of the data-driven
model to the QoT decisions of the Q-factor model (IA-UMC-RWA)

[1] T. Panayiotou, G. Ellinas, and S. P. Chatzis, “A data-driven QoT decision
approach for multicast connections in metro optical networks,” in Proc. Optical
Network Design and Modeling (ONDM), Cartagena, Spain, May 2016.
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Pattern Features

* Input vector X, discrete target value y

 Historical dataset D = {(x()).y())j =1,....n}
x(N' = [x1(). 22(). 23(). 24 (). %5 (). 26 (/)]

* X,()) is the nominal path length of ;

X,(]) is the number of erbium doped fiber amplifiers (EDFAs) in J;
* X3(J) is the nominal maximum link length of J;

*  X4(J) is the degree of the destination node in j;

* Xs(J) is the nominal wavelength on which j is established;

* Xg(J) is the bias b of the first layer of the neural network.
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Neural Networks with Dropout

» Dropout is a regularization method for preventing units from
co-adapting too much by randomly dropping units from the
neural network during training.
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Neural Networks with Dropout
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Neural Networks with Dropout

Mean-square loss function E = i (v(7) = 0(7))2,

J=1

For learning, Adam algorithm is used :

v' Adam algorithm is an efficient stochastic optimization method that only
requires first-order gradients with little memory requirements

v' It is well suited for problems that are large in terms of data and/or
parameters

v" It has been shown to outperform other stochastic optimization methods

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int.
Conf. for Learning Representations, San Diego, CA, 2015.
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Data Set Generation

NETWORK STATISTICS

Number of nodes 14
Number of bidirectional links 50
Average distance (km) 67
Maximum distance (km) 100
Minimum distance (km) 20
Average node degree 7.15
Minimum node degree 4
Maximum node degree 10
Diameter (km) 160
Diameter (hops) 3

= Requests were generated with the multicast group sizes varying between 1
and 7

=  Requests subjects to a Poisson process

= Data were generated assuming that 4, 8, 16, and 32 C-band wavelengths
were available

= Steiner tree (ST) heuristic & Dijkstra’s algorithm was used & the first-fit
algorithm
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Dynamic IA-UMC-RWA Algorithm
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Dynamic IA-UMC-RWA Algorithm

= X(J) and Y (J) were extracted from each lightpath/light-tree | attempted to

be established into the network

For each light-tree, a number of patterns was generated by decomposing

each light-tree to its constituent lightpaths

* y(J)=0 for a Q-factor below the predetermined Q-threshold, and y (j) =
1 otherwise

PATTERNS GENERATED FOR KEACH WAVELENGTH CASE

U=4 U=8 U=16 U=32

# patterns in D 50,322 82,010 91,221 91,338
# patterns with y(j) = 1 36,152 60,966 69,594 69,300
# patterns with y(j) = 0 14,170 21,044 21,627 22,038
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Model Accuracy

Accuracy Resurrs For U = 4

Accuracy Resurrs For U = 8

# of patterns in D" 6000 12,000 24,000 # of patterns in D" 6000 12,000 24,000
# of patterns in D 2000 2000 2000 # of patterns in 7* 2000 2000 2000
Dropout fraction (p) 0.8 0.8 0.8 Dropout fraction (p) 0.8 0.8 0.8
# of epochs 700 700 700 # of epochs 700 700 700
Training time in min 0.7 1.5 3 Training time in min 0.6 1.5 3
Class 1 Acc. (%) 90.8 87.6 89 Class 1 Acc. (%) 88.5 85 90
Class 2 Acc. (%) 87.3 100 99.9 Class 2 Acc. (%) 96 100 99
Total Acc. (%) 89 93.8 94.45 Total Acc. (%) 92.25 92.5 94.5
Accuracy Resurrs ror U = 16 Accuracy Resurrs ror U = 32
# of patterns in D" 8000 18,000 36,000 # of patterns in D’ 8000 18,000 36,000
# of patterns in D' 2000 2000 2000 # of patterns in D* 2000 2000 2000
Dropout fraction (p) 0.75 0.75 0.75 Dropout fraction (p) 0.75 0.75 0.75
# of epochs 800 800 800 # of epochs 800 500 800
Training time in min 1 2.6 5.3 Training time in min 1 2 5.3
Class 1 Acc. (%) 74.4 87.5 93.3 Class 1 Acc. (%) 91.7 87.7 93.7
Class 2 Acc. (%) 100 99.9 96.4 Class 2 Acc. (%) 86.6 99.1 97.4
Total Acc. (%) 87.2 93.7 94.8 Total Acc. (%) 89.15 93.4 95.5
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Performance Evaluation

* Case 0: The QoT constraint 1s not considered during the dynamic UMC-
RWA algorithm.

 Case 1. The Q-factor model 1s utilized in the dynamic IA-UMC-RWA
algorithm for the QoT decisions.

* Case 2: The data-driven QoT model is utilized in the dynamic TA-UMC-
RWA algorithm for the QoT decisions

UCDAVIS 12
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Performance Evaluation
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Performance Evaluation

Brocking ProBagiLITY REsurts For U = 4

BrockinGg PrROBABILITY REsuLTS FOR U = 8

Case 2 Case 2

Case 2 Case 2

Case 0 Casel (93.8) (94.45) Case 0 Casel (92.5) (94.5)
Overall Pr{blocking} 0.42 0.44 0.44 0.44 Overall Pr{blocking} 0.09 0.11 0.15 0.12
Pr{blocking} due to QoT - 0.15 0.25 0.21 Pr{blocking} due to QoT - 0.04 0.1 0.06

Pr{blocking} due to wav.  0.42 0.29 0.19 0.23

Pri{blocking} due to wav.  0.09 0.07 0.05 0.06

Brocking ProasiLiTy REsvurrs For U = 16

Brocking ProBaBiLITY RESULTS FOR U = 32

Case 2 Case 2

Case 2 Case 2

Case 0 Casel (93.7) (94.8) Case 0 Casel (934) (95.5)
Overall Pr{blocking} 0 0.0002 0.0014 0.0004  OQverall Pr{blocking} 0 0 0.0004 0.0004
Pr{blocking} due to QoT - 0.0002 0.0014 0.0004 Pr{blocking} due to QoT — 0 0.0004 0.0004
Pri{blocking} due to wav. 0 0 0 0 Pri{blocking} due to wav. 0 0 0 0

W UCDAVIS 14

NETWORKS RESEARCH LAB



Conclusion

Employ machine learning in unicast and multicast provisioning with QoT
constraint, which can also be applied in other areas, such as estimating the
failure probability.

Data set generation can be based on results of other traditional schemes,
which is not difficult to achieve.

The paper also consider the practical feasibility, although it is not enough

and detailed.
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Thanks!



