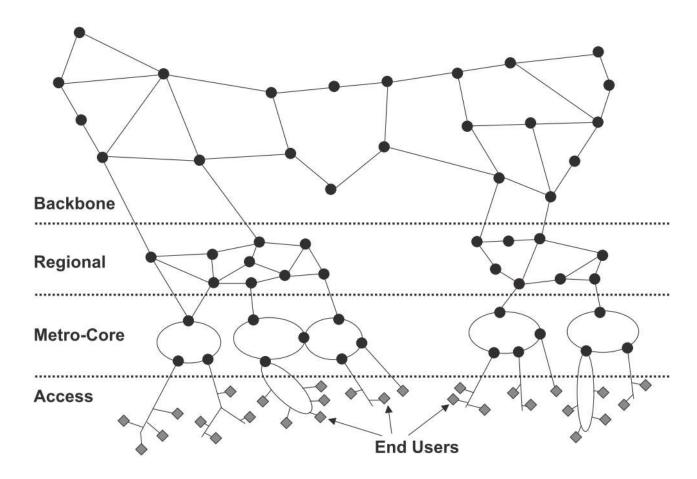
Disaster-Resiliency Strategies for Next-Generation Metro Optical Networks


Giap Le, ECE, UC Davis Nov. 16, 2018

1

Outline

- 1. Background of Metro Optical Networks, Network Planes, SDN, NFV, and Resilience Techniques
- 2. Disaster-Resiliency Strategies for Next-Generation Metro Optical Networks
 - ✓ Control plane for NG-MAN
 - ✓ Slice-protection for NG-MAN data plane
 - ✓ Fast recovery techniques
- 3. Research Problem Formulation and Proposals

Hierarchy of Optical Networks

- ✓ Differentiated based on:
 - number of customers served
 - required capacity
 - and geographic extent
- ✓ Metro-core:
 - aggregates the traffic from access networks
 - inter-connects telecom center offices
 - serves thousands of customers
 - spans an area of hundreds of kilometers
 - be in ring topologies

[1] J. M. Simmons, "Optical Network Design and Planning," Springer International Publishing, 2014

Planes of Optical Networks: Conventional

- Data plane: responsible for forwarding of data
- Management plane: responsible for network operations

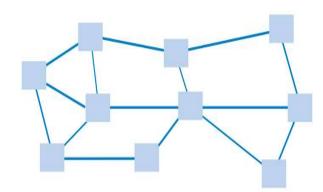
✓ historically used centralized network management system (NMS)

✓ performs fault, configuration, accounting, performance, and security (FCAPS)

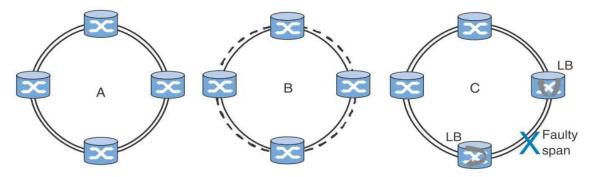
• Control plane:

✓ performed by software **distributed** in network equipment

✓ discovers network topology, network resources, and network capabilities;
 disseminates of this information throughout the network; computes paths;
 and signals for connection establishment and teardown

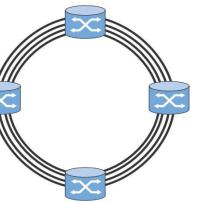

 \checkmark plays an important role in supporting dynamic traffic.

Basic Network Resilience Techniques


- Network survivability in two forms: **protection** and **restoration**
- Protection:
 - ✓ pre-provisioned failure recovery
 - ✓ fast recovery
 - ✓ single failure network survivability up to 100%
 - $\checkmark\,$ expensive due to duplicating network equipment
- Restoration:
 - $\checkmark\,$ compute alternative route around the failure
 - ✓ based on available resources
 - $\checkmark\,$ slower than protection
 - \checkmark may not be viable due to no network resources

Network Topologies

Mesh Topology

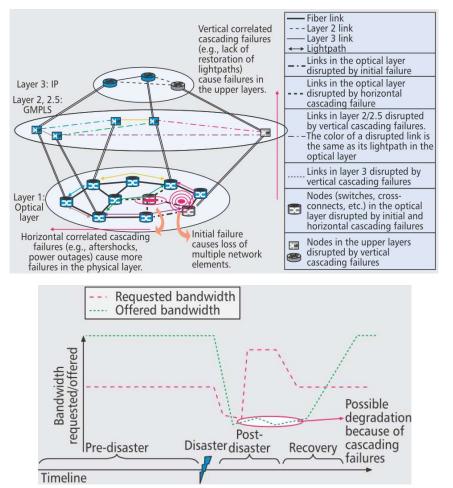


Ring Topology

✓ suitable for metro optical networks
✓ fast to switch to protection

- ✓ suitable for long-haul networks✓ including cross-connecting nodes
- excellent protection strategies by rerouting the traffic away from failure condition

✓ bidirectional


- ✓ many wavelengths and optical links
- ✓ ring nodes performs both
 OADM and de/aggregation

Next-Generation Optical Ring

[2] L. Wosinska et al., "Network Resilience in Future Optical Networks," Springer, 2009

Network Adaptivity from Disaster/Cascading Failures

- Protection/restoration techniques (for single single-event failure) do not work for disaster disruptions.
- A disaster may cause correlated cascading failures:
 - ✓ horizontal failures at optical layer
 - ✓ vertical failures at the upper layers
- Post-disaster traffic **flood** may cause severe **congestion**.
- **Content connectivity**: reachability of content from a network

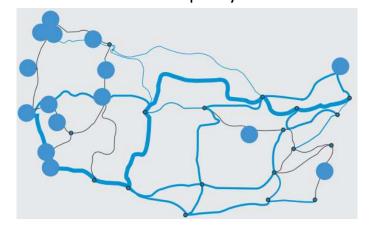
[3] B. Mukherjee, M. F. Habib and F. Dikbiyik, "Network adaptability from disaster disruptions and cascading failures," in *IEEE Communications Magazine*, vol. 52, no. 5, pp. 230-238, May 2014.

Network Adaptivity from Disaster/Cascading Failures

- Network Adaptivity: ability to re-range itself (self-organization networks), and to re-disseminate network content
- Network preparedness:
 - ✓ normal preparedness
 - ✓ enhanced preparedness
 - ✓ post-disaster preparedness

Adaptivity to Disruptions by Degraded-Service Tolerance

Normal Preparedness:

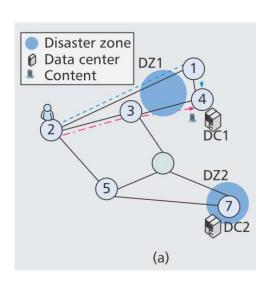

- ✓ Probabilistic approach
- ✓ Optical layer only
- ✓ Risk-aware routing
- ✓ Protection of links and nodes

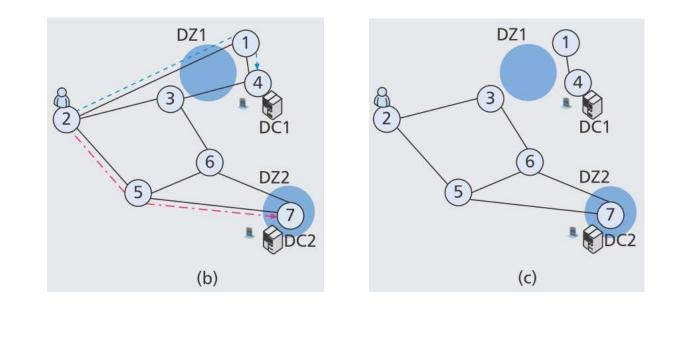
Notes:

✓ line thickness = bandwidth utilization

 \checkmark circles = risky regions

Line thickness: capacity utilization

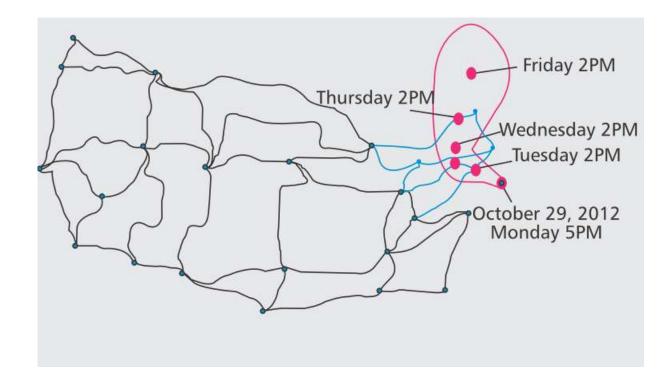

Risk-unaware routing


Risk-aware routing

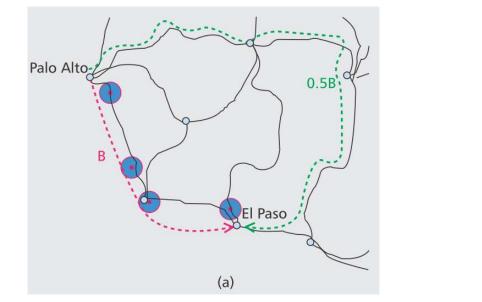
Adaptivity to Disruptions by Degraded-Service Tolerance

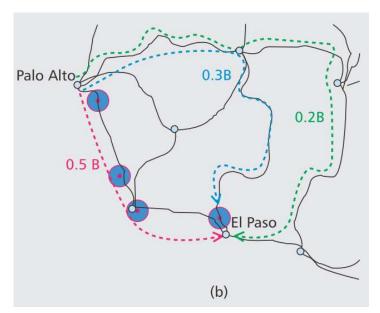
Normal Preparedness:

 ✓ Integrated solution for both content and connection protections



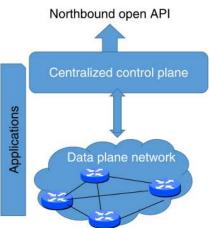
Adaptivity to Disruptions by Degraded-Service Tolerance


Enhanced Preparedness:


- ✓ disasters may be well known in advance
- ✓ re-allocate networks resources
- ✓ replicate data

Adaptivity to Disruptions by Degraded-Service Tolerance **Post-Disaster Actions:**

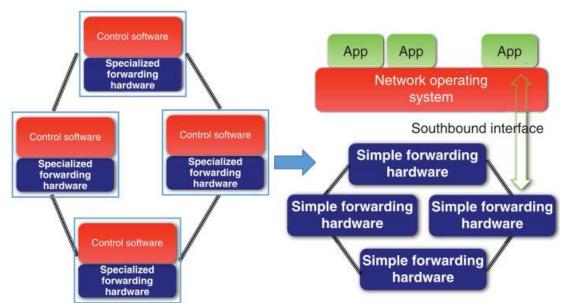
- ✓ re-provisioning using excess capacity (EC)
 - ✓ **multipath** provisioning approaches
 - ✓ different tolerances of services [5]



[3] B. Mukherjee, M. F. Habib and F. Dikbiyik, "Network adaptability from disaster disruptions and cascading failures," in *IEEE Communications Magazine*, vol. 52, no. 5, pp. 230-238, May 2014.

[4] S. S. Savas, M. F. Habib, M. Tornatore, F. Dikbiyik and B. Mukherjee, "Network adaptability to disaster disruptions by exploiting degraded-service tolerance," in *IEEE Communications Magazine*, vol. 52, no. 12, pp. 58-65, December 2024.

Software-Defined Networking (SDN)

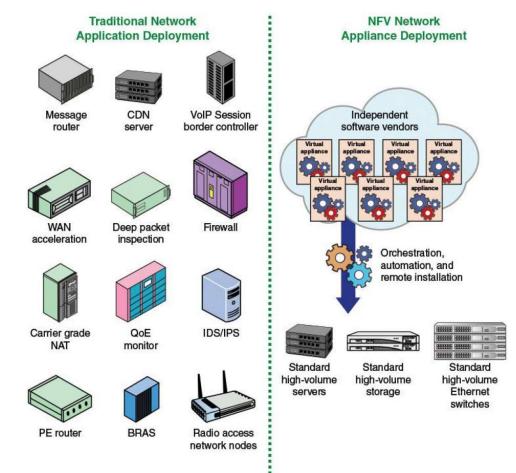


Principle: decoupling control plane and data plane

Motivations from a technical perspective:

- 1. to independently scale the control plane and data plane to meet NG-traffic growth and demands
- 2. to improve service velocity and innovation
- 3. to enable flexible and efficient network virtualization

[5] Ying Zhang, "Network Function Virtualization: Concepts and Applicability in 5G Networks," IEEE PRESS, 2018


Conventional and Software-defined Networking Comparison

13

Network Function Virtualization (NFV)

Principles:

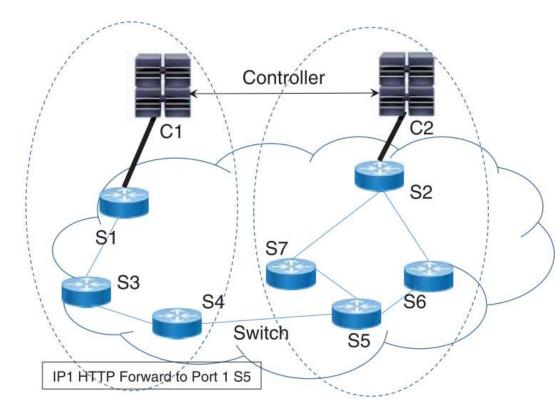
- decouples network functions from proprietary hardware platforms and implements these functions in software (on VMs)
- ✓ moves network functionality to software
- ✓ uses commodity hardware
- ✓ uses standardized and open Application Program Interfaces (APIs)
- ✓ support more efficient evolution, development, and repositioning of network functions
- ✓ overlay (logical, virtual) networks on top of a physical network

[5] Ying Zhang, "Network Function Virtualization: Concepts and Applicability in 5G Networks," *IEEE PRESS*, 2018
 [6] William Stallings, "Foundation of Modern Networking: SDN, NFV, QoE, IoT, and Cloud," *Pearson Education, Inc, 2016*

Project Overview

Key terms:

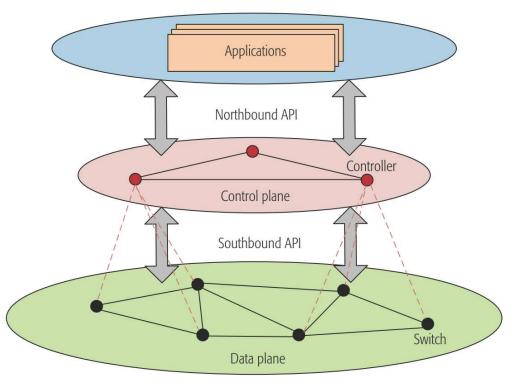
✓ **ultra-reliable**, **low-latency** services (autonomous driving, augmented reality, telemedicine), **resilient** against largely-disruptive events


✓ enable technologies: network-and-computing ecosystem, SDN, Edge
 Computing, and Slice Networking (NFV)

Research directions:

- ✓ disaster-resilient control plane in NG-MAN: cognitive and hierarchical control plane that remains operational even main controllers fails
- ✓ slicing protection for disaster-resilient NG-MAN data plane
- ✓ rapid recovery during post-disaster phase

Resilient Control Plane Considerations


- Switches go **offline** without controller connection
- Control packets should be transmitted on different paths (or even on a different network)
- Flexible, dynamic, resilient binding between controllers and switches
- Migration of functions and backup if one controller fails

Example of controller and switch connection

[5] Ying Zhang, "Network Function Virtualization: Concepts and Applicability in 5G Networks," IEEE PRESS, 2018

Controller Placement in SD MON

Simplified Architecture for SDN

- Research problem: How many and how to place controllers and allocate switches to them
- Constraints:
 - ✓ minimum latency (processing + propagation)
 - \checkmark enhanced reliability and resilience
 - ✓ minimum development cost
 - ✓ minimum energy consumption

[7] G. Wang, Y. Zhao, J. Huang and W. Wang, "The Controller Placement Problem in Software Defined Networking: A Survey," in *IEEE Network*, vol. 31, no. 5, pp. 21-27, 2017.

- Reliability: inversely proportional to expected percentage of control path loss
- **Resilience**: capability to sustain loss of connectivity upon controller and link abruptions

Objectives	Solutions	Details	Methods
Minimize net- work latency	Heller's Solution [2]	Examine the impacts of placements on average and the worse-case propagation latency	K-center
	CCPP [3]	Reduce both the number and load of controllers	Integer programming

[7] G. Wang, Y. Zhao, J. Huang and W. Wang, "The Controller Placement Problem in Software Defined Networking: A Survey," in *IEEE Network*, vol. 31, no. 5, pp. 21-27, 2017.

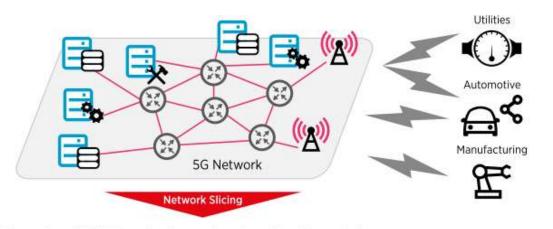
18

Maximize reliability and resilience	Hu's solution [4]	Maximize the reliability of networks	Simulated annealing
	K-critical [5]	Create robust control topology and balance load among controllers	Robust tree
	Guo's Solution [6]	Design a new resilience metric and improve the resilience of SDN	Interdependence graph and cascading failure
	Survivor [7]	Explore path diversity and improve survivability of SDN	Generic, proximi- ty-based and residual capacity-based heu- ristics
	POCO [8]	Evaluate trade-off between failure free and controller failure values	Pareto-based optimal placement

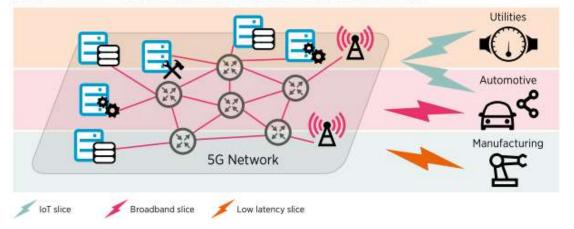
[7] G. Wang, Y. Zhao, J. Huang and W. Wang, "The Controller Placement Problem in Software Defined Networking: A Survey," in *IEEE Network*, vol. 31, no. 5, pp. 21-27, 2017.

19

Minimize de- ployment cost and energy consumption	Sallahi' solution [9]	Minimize the cost of installing controllers, linking controllers to switches and linking controllers together	Linear programming
	Rath's solution [10]	Minimize packet drops, delay and cost of deployment	Non-zero-sum based game theoretic
	GreCo [11]	Reduce the cost of energy consumption	Heuristic approach
	LiDy [12]	Propose a dynamic flow management algorithm to reduce energy consumption and maintenance costs	Heuristic location search and placement algorithm

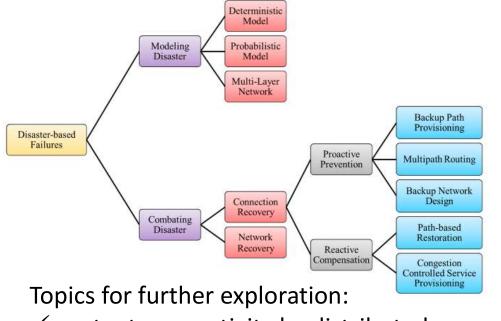

[7] G. Wang, Y. Zhao, J. Huang and W. Wang, "The Controller Placement Problem in Software Defined Networking: A Survey," in *IEEE Network*, vol. 31, no. 5, pp. 21-27, 2017.

- Conclusion: to shorten latency between controllers and switches, maximize reliability and resilience, and minimize deployment cost and energy consumption
- ✓ Requirements:
 - efficient algorithm (real time)
 - multi-objective optimization problems
 - multiple-controller cooperation
 - cost awareness
 - resilient awareness


[7] G. Wang, Y. Zhao, J. Huang and W. Wang, "The Controller Placement Problem in Software Defined Networking: A Survey," in *IEEE Network*, vol. 31, no. 5, pp. 21-27, 2017.

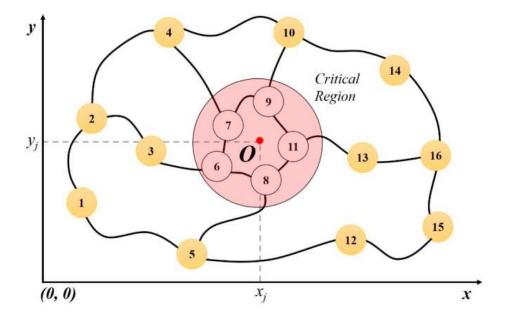
21

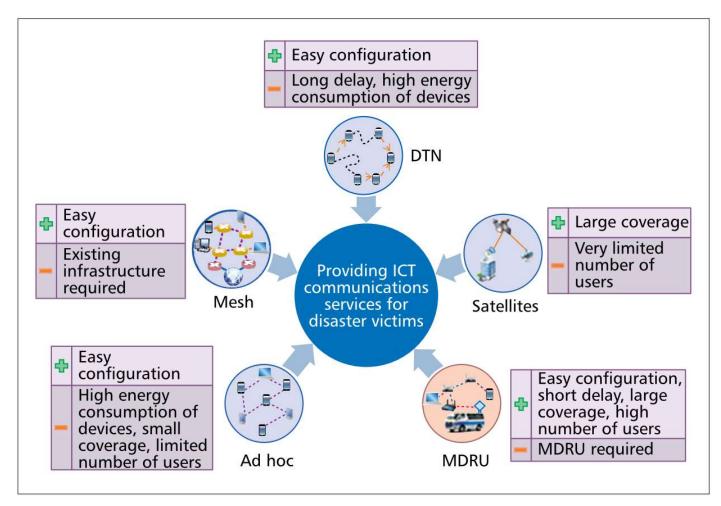
Network Slicing Protection


5G networks subdivided into virtual networks each optimised for one business case

- Key technology to enable network flexibility
- Multiple logical networks on a common shared physical infrastructure
- To meet various targeting specific needs (latency, reliability, data rates)
- All components in a slice must be protected (BW, computing and storage resources)

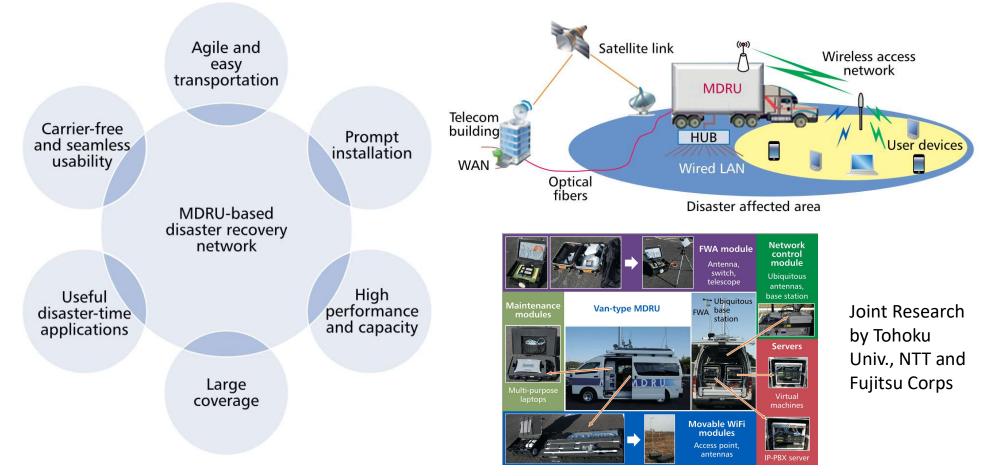
[8] Global mobile Suppliers Association (GSA), "5G Network Slicing for Vertical Industries, White Paper," Sept. 2017


Network Slicing Protection


- ✓ content connectivity by distributed or backup data
- ✓ congestion-aware, disaster-failure-aware routing and wavelength assignment

[9] Habib, M.F.; Tornatore, M.; Dikbiyik, F.; Mukherjee, B. Disaster survivability in optical communication networks. Comput. Commun. 2013, 36, 630–644.

[10] Ashraf, M. W.; Idrus, S. M.; Iqbal, F.; Butt, R. A. & amp; Faheem, M., "Disaster-Resilient Optical Network Survivability: A Comprehensive Survey, "" *Photonics*, 2018.



Network Post-disaster Recovery

[11] T. Sakano *et al.*, "Bringing movable and deployable networks to disaster areas: development and field test of MDRU," in *IEEE Network*, vol. 30, no. 1, pp. 86-91, January-February 2016.

Network Post-disaster Recovery

[11] T. Sakano *et al.*, "Bringing movable and deployable networks to disaster areas: development and field test of MDRU," in *IEEE Network*, vol. 30, no. 1, pp. 86-91, January-February 2016.

Bio-inspired Self-organization Capabilities for NG-MON

Weaver ant (Oecophylla)

Wasp (Polybia occidentalis)

Termite

Swarm Intelligence Properties:

- ✓ Autonomy
- ✓ Adaptability
- ✓ Scalability
- ✓ Flexibility
- ✓ Robustness
- ✓ Massively parallel
- ✓ Self Organization and Healing

Bio-inspired Self-organization Capabilities for NG-MON

Link to project website: SELFNET

Contact: SELFNET-Contact@5G-PPP.eu

Horizon 2020 - Call:	H2020-ICT-2014-2		
Topic:	ICT-14-2014		
Type of action:	RIA		
Duration:	36 Months		
Start date:	1/7/2015		
Project Title: SELFNET: A FRAMEWORK FOR SELF-ORGANIZED NETWORK MANAGEMENT IN VIRTUALIZED SOFTWARE DEFINED NETWORKS			

Research Article

The SELFNET Approach for Autonomic Management in an NFV/SDN Networking Paradigm

Pedro Neves,¹ Rui Calé,¹ Mário Rui Costa,¹ Carlos Parada,¹ Bruno Parreira,¹ Jose Alcaraz-Calero,² Qi Wang,² James Nightingale,² Enrique Chirivella-Perez,² Wei Jiang,³ Hans Dieter Schotten,³ Konstantinos Koutsopoulos,⁴ Anastasius Gavras,⁵ and Maria João Barros⁵

¹ Portugal Telecom Inovação (PTIN), Rua Eng. José Ferreira Pinto Basto, 3810-106 Aveiro, Portugal ² University of West Scotland (UWS), Almada Street, Hamilton, South Lanarkshire ML3 0JB, UK ³ German Research Centre for Artificial Intelligence (DFKI GmbH), 67655 Kaiserslautern, Germany ⁴ Creative Systems Engineering (CSE), Agiou Meletiou 45, 11257 Athens, Greece ⁵ Eurescom, Wieblinger Weg 19, 69123 Heidelberg, Germany

Correspondence should be addressed to Pedro Neves; pedro-m-neves@telecom.pt

Received 4 December 2015; Accepted 24 December 2015

Topic: Self-organized, Selfhealing Mechanisms in NFV/SDN Next-Generation Metro Optical Networks:

✓ auto disaster failure
 detection and mitigation
 ✓ fast and robust recovery

Tools and What need to be learned (in a short time)

Convex optimization

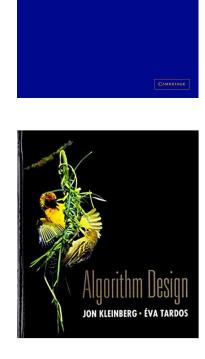
A convex optimization problem is one of the form

minimize $f_0(x)$ subject to $f_i(x) \le b_i, \quad i = 1, \dots, m,$ (1.8)

where the functions $f_0, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ are convex, *i.e.*, satisfy

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1, \alpha \ge 0, \beta \ge 0$. The least-squares problem (1.4) and linear programming problem (1.5) are both special cases of the general convex optimization problem (1.8).


Linear programming

Another important class of optimization problems is *linear programming*, in which the objective and all constraint functions are linear:

minimize
$$c^T x$$

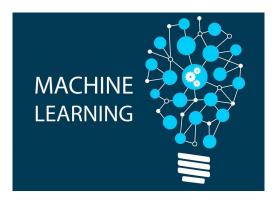
subject to $a_i^T x \le b_i$, $i = 1, \dots, m$. (1.5)

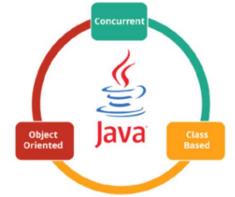
Here the vectors $c, a_1, \ldots, a_m \in \mathbf{R}^n$ and scalars $b_1, \ldots, b_m \in \mathbf{R}$ are problem parameters that specify the objective and constraint functions.

28

Stephen Boyd and

Lieven Vandenberghe


Convex


Optimization

Tools and What need to be learned

In Summary

Object goals: Disaster-resilient Metro Optical Networks

- ✓ ultra-reliable, low-latency
- ✓ resilient against largely-disruptive events

✓ including novel concepts: SDN, NFV, Edge Computing, Slicing Protection *Research Problem Proposals*:

- ✓ controller placement (physical place, number, topology)
- ✓ allocate switches to controllers
- ✓ content connectivity by distributed or backup data
- congestion-aware, disaster-failure-aware routing and wavelength assignment
- ✓ recovery using movable and deployable units
- ✓ self-organized and self-healing for SDN/NFV Metro Optical Networks

Thank you for your attention!

Comments and Suggestions