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Revisiting MEC

« MEC architecture is a new revenue stream for mobile
operators that has not matured sufficiently

A few application areas adopting edge computing
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Research areas

« Computation offloading

« Edge accelerated Web browsing (EAB) prototype designed for Web
application execution using a better offloading technique.

* Network architecture-based solutions, such as cloud of co-located
mobile devices

» Storage
 Low latency
* Energy efficiency



Research on Infrastructure

* Deployment scenarios
« MECs in outdoor: RAN
« MECs in indoor: Wifi or 3G/4G access points

« MEC testbeds

* 5G test network at Oulu, Finland
 Industrial testbeds: Nokia and China



Other Open Issues

e Security
« The application data movement: possible with encryption

* Pricing

« Web interface
* Not optimized for mobile

e Other

* Privacy, openness, multiservices, robustness, resilience



Content Delivery and Caching

* The edge computing technology plays a key role in website
performance optimization
 caching HTML content
* reorganizing Web layout
* resizing Web components



Improving Short-lived Web Traffic
Performance

- How to compensate the throughput gap caused by the
computation latency during short-lived application loading by only
adapting the transport-layer protocol?

« not affected by any application layer constraints such as HTTPs content
encryption and security policy

- embed network intelligence at mobile edge

* Through the optimization of TCP initial window (IW) size

« short-lived applications such as webpage downloading, where content
downloading is normally completed during the TCP slow-start phase

« Mobile edge’s awareness of the computation time on the device
 does play an important role in webpage downloading performance



MEC Support

* Optimize TCP IW

* DNS response with context
information
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How MEC Server Obtains Context Info

* Not every web content but popular web pages

* Testing as a service (TaaS)
« MEC server performs test/measurement services
« Google firebase or Flywheel
« Computation latency and total size of content can be obtained



Performance Evaluation

e real LTE-A testing infrastructure

« use QUIC as the underlying protocol

« when the computation latency accounts for less than 20% of

the overall downloading time,
« the throughput gap can be fully compensated.
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Figure 3: Proof-of-concept implementation in LTE-A test bed



* When the proportion of computation latency varies between
20% and 50%,
* the throughput can be improved up to 34.5%. Such improved

downloading throughput has led to the reduced webpage
downloading time by up to 25.1%.
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Recent Changes in Web

« HTTPS « TCP initial window
« TLS + HTTP  [ETF RFC 6928 — a proposal to
. QUIC increase the TCP Initial
, Window to 10 segments: 10 *
* UDP + TLS + TCP Congestion 1432 bytes = 14KB for the

« HTTP/2: low latency protocol

« Single TCP connection, Server
push, Header compression,
binary, multiple streams
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https://tools.ietf.org/html/rfc6928

Latency vs Bandwidth impact on Page Load Time
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Linear improvement
in page load time!
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“To speed up the Internet at large, we should look for more ways to bring down RTT. What if we could
reduce cross-atlantic RTTs from 150 ms to 100 ms? This would have a larger effect on the speed of the
internet than increasing a user’s bandwidth from 3.9 Mbps to 10 Mbps or even 1 Gbps.” - Mike Belshe
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Optimizing Web

Cache resources on the client

Redundant data transfers are... redundant!

- Cache-Control and ETag’s on each resource is a must.

Compress assets during transfer
Bytes are slow and expensive to transfer...

- GZIP offers 40-80% savings on most assets - easy win.

Resource fetch, execution and processing, ....

If/when lower layers fail, we're Application
forced to “optimize” at the A
application layer...
> HTTP
Handshakes, goodput, TCP UDP
packet loss, ...
Link layer

Reuse TCP connections

(Ethernet, WiFi, LTE...)

Connection are expensive
- handshake latency, resource overhead, ...

v HTTP/1.x v HTTP/2 —— Single connection!

Use a Content Delivery Network
Page rendering is latency-bound (most of the time)

- lower roundtrip times are critical to optimize asset delivery

v HTTP/1.x v HTTP/2

Parallelism, prioritization,
protocol overhead, ...

All things DNS (and QUIC :))

Reduce DNS lookups

Unresolved names block requests

v HTTP/1.x v HTTP/2

RRC and radio delays, energy consumption, ...
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Questions about supporting mobile
web/app performance by MEC server

« TCP configuration?
« Scalability issue for every web domain and TCP connections
« Security issue for kernel-level TCP configuration
« Root privilege is required
« QUIC configuration
 Application layer configuration: CUBIC + TLS + UDP
* Only by Google servers



Discussion

 Improving end-to-end application performance by middle
box (MEC/proxy/CDN)

 Challenges
» Encryption: TLS, (DNS)
» Security: certificate pinning, HSTS
» Scalability
» Possibilities
- Caching/proxy: Amazon Silk, Opera mini ~ >Peeding up Web Page Loads with
» CDN: Akamai/Limelight, Netflix Shandian, USENIX 2016
« HTTP/2 optimization with TaaS

» DNS, server push, compression, concatenating resources, inline resources



