Paper survey related with web/app
performance optimization and MEC

Youngseok Lee
lee@cnu.ac.kr

chu.lee@ucdavis.edu

mailto:lee@cnu.ac.kr
mailto:cnu.lee@ucdavis.edu

1. Mobile Edge Computing: A Survey, in /EEE Internet of
Things Journal, vol. 5, no. 1, pp. 450-465, Feb. 2018.

2. Optimization of Webpage Downloading Performance with
Content-aware Mobile Edge Computing. In Proceedings of
the Workshop on Mobile Edge Communications (MECOMM
"17). ACM

3. Enabling context-aware HTTP with mobile edge hint, 2077

14th IEEE Annual Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, 2017,

Revisiting MEC

« MEC architecture is a new revenue stream for mobile
operators that has not matured sufficiently

A few application areas adopting edge computing

eeeeeeeeeeeee

E D D Core
\ 1 !
‘\ : :' A
N Y A
((n))
9 ((A’) @) Cloud
»
&
CCCCCCCC
[o MEC
I Oo Uo 0o
= Mobile D
as=
Foe Fig. 4. MEC archi
EloudiDatacenten Distributed Locatlons 1g. 4. - architecture.
3

Fig. 1. Cloudlet. . N .
® Fig. 3. Three-layer architecture.

Research areas

« Computation offloading

« Edge accelerated Web browsing (EAB) prototype designed for Web
application execution using a better offloading technique.

* Network architecture-based solutions, such as cloud of co-located
mobile devices

» Storage
 Low latency
* Energy efficiency

Research on Infrastructure

* Deployment scenarios
« MECs in outdoor: RAN
« MECs in indoor: Wifi or 3G/4G access points

« MEC testbeds

* 5G test network at Oulu, Finland
 Industrial testbeds: Nokia and China

Other Open Issues

e Security
« The application data movement: possible with encryption

* Pricing

« Web interface
* Not optimized for mobile

e Other

* Privacy, openness, multiservices, robustness, resilience

Content Delivery and Caching

* The edge computing technology plays a key role in website
performance optimization
 caching HTML content
* reorganizing Web layout
* resizing Web components

Improving Short-lived Web Traffic
Performance

- How to compensate the throughput gap caused by the
computation latency during short-lived application loading by only
adapting the transport-layer protocol?

« not affected by any application layer constraints such as HTTPs content
encryption and security policy

- embed network intelligence at mobile edge

* Through the optimization of TCP initial window (IW) size

« short-lived applications such as webpage downloading, where content
downloading is normally completed during the TCP slow-start phase

« Mobile edge’s awareness of the computation time on the device
 does play an important role in webpage downloading performance

MEC Support

* Optimize TCP IW

* DNS response with context
information

ewnd ewnd cwnd
fWa‘efmtEt A dé-faugt npr /‘

Y t«:1.e-fml.t ' f t

teo putiation feo putntmn

Lprinciple
(a) TCP slow start principle (b) TCP slow start with (c) TCP slow start with

co putation activity throu hputco pensation
(application likes web pa e) throu hopti ized IW

Figure 2: Throughput gap due to computation activity

3) HTTP request with
2) Local Algorithm to Remote web

optimized TCP/QUIC IW values
decide optimized TW @l E —

' Content 'ltmbutc
Qe

« = =» Offline behavior B MEC query and update TaaS cloud service provider

+— (Online behavior server

Figure 1: Overview of proposed MEC framework

How MEC Server Obtains Context Info

* Not every web content but popular web pages

* Testing as a service (TaaS)
« MEC server performs test/measurement services
« Google firebase or Flywheel
« Computation latency and total size of content can be obtained

Performance Evaluation

e real LTE-A testing infrastructure

« use QUIC as the underlying protocol

« when the computation latency accounts for less than 20% of

the overall downloading time,
« the throughput gap can be fully compensated.

QUIC Client
(Laptop \}"itl} nexus ! QUIC server
6p tetherin) |

$ i { A
[| Content source p Ejl
1l

Content attributes DNS/MEC server TaaS Server

Figure 3: Proof-of-concept implementation in LTE-A test bed

* When the proportion of computation latency varies between
20% and 50%,
* the throughput can be improved up to 34.5%. Such improved

downloading throughput has led to the reduced webpage
downloading time by up to 25.1%.

000 Optimal IW (Content Size:1000KB « 1/3)

—50ms
——100ms
——150ms | {

—_

(93]

[=]
T

100 -

!
.r. !
" \
I
‘j
/
0

0% 20% 40% 60% 80% 100%
Propotion of Computation Latency

Optimal IW (packet)

w
o

5: Optimal IW in real LTE-A network (varying content size)

Recent Changes in Web

« HTTPS « TCP initial window
« TLS + HTTP [ETF RFC 6928 — a proposal to
. QUIC increase the TCP Initial
, Window to 10 segments: 10 *
* UDP + TLS + TCP Congestion 1432 bytes = 14KB for the

« HTTP/2: low latency protocol

« Single TCP connection, Server
push, Header compression,
binary, multiple streams

sudo ss -ti

nnnnn

13

https://tools.ietf.org/html/rfc6928

Latency vs Bandwidth impact on Page Load Time

3500 7
3000 1
2500 1
2000 1
1500 1
1000 -

Page Load Time as bandwidth increases

Single digit % perf
» improvement after
5 Mbps

Page Load Time (ms)

1Mbps 2Mbps 3Mbps 4Mbps 5Mbps 6Mbps 7Mbps 8Mbps 9Mbps 10 Mbps

3500 7
3000 1
2500 1
2000 1
1500 1
1000 -

Page Load Time as latency decreases

Linear improvement
in page load time!

Page Load Time (ms)

200ms 180ms 160ms 140ms 120ms 100ms 80 ms 60 ms 40 ms 20ms

“To speed up the Internet at large, we should look for more ways to bring down RTT. What if we could
reduce cross-atlantic RTTs from 150 ms to 100 ms? This would have a larger effect on the speed of the
internet than increasing a user’s bandwidth from 3.9 Mbps to 10 Mbps or even 1 Gbps.” - Mike Belshe

14

Optimizing Web

Cache resources on the client

Redundant data transfers are... redundant!

- Cache-Control and ETag’s on each resource is a must.

Compress assets during transfer
Bytes are slow and expensive to transfer...

- GZIP offers 40-80% savings on most assets - easy win.

Resource fetch, execution and processing,

If/when lower layers fail, we're Application
forced to “optimize” at the A
application layer...
> HTTP
Handshakes, goodput, TCP UDP
packet loss, ...
Link layer

Reuse TCP connections

(Ethernet, WiFi, LTE...)

Connection are expensive
- handshake latency, resource overhead, ...

v HTTP/1.x v HTTP/2 —— Single connection!

Use a Content Delivery Network
Page rendering is latency-bound (most of the time)

- lower roundtrip times are critical to optimize asset delivery

v HTTP/1.x v HTTP/2

Parallelism, prioritization,
protocol overhead, ...

All things DNS (and QUIC :))

Reduce DNS lookups

Unresolved names block requests

v HTTP/1.x v HTTP/2

RRC and radio delays, energy consumption, ...

15

Questions about supporting mobile
web/app performance by MEC server

« TCP configuration?
« Scalability issue for every web domain and TCP connections
« Security issue for kernel-level TCP configuration
« Root privilege is required
« QUIC configuration
 Application layer configuration: CUBIC + TLS + UDP
* Only by Google servers

Discussion

 Improving end-to-end application performance by middle
box (MEC/proxy/CDN)

 Challenges
» Encryption: TLS, (DNS)
» Security: certificate pinning, HSTS
» Scalability
» Possibilities
- Caching/proxy: Amazon Silk, Opera mini ~ >Peeding up Web Page Loads with
» CDN: Akamai/Limelight, Netflix Shandian, USENIX 2016
« HTTP/2 optimization with TaaS

» DNS, server push, compression, concatenating resources, inline resources

