Paper survey related with web/app performance optimization and MEC

Youngseok Lee

lee@cnu.ac.kr

cnu.lee@ucdavis.edu

1

- 1. Mobile Edge Computing: A Survey, in *IEEE Internet of Things Journal*, vol. 5, no. 1, pp. 450-465, Feb. 2018.
- 2. Optimization of Webpage Downloading Performance with Content-aware Mobile Edge Computing. In Proceedings of the Workshop on Mobile Edge Communications (MECOMM '17). ACM
- 3. Enabling context-aware HTTP with mobile edge hint, 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, 2017,

Revisiting MEC

- MEC architecture is a new revenue stream for mobile operators that has not matured sufficiently
- A few application areas adopting edge computing
 - Fog computing, AR, content delivery

Fig. 3. Three-layer architecture.

Research areas

- Computation offloading
 - Edge accelerated Web browsing (EAB) prototype designed for Web application execution using a better offloading technique.
 - Network architecture-based solutions, such as cloud of co-located mobile devices
- Storage
- Low latency
- Energy efficiency

Research on Infrastructure

• Deployment scenarios

- MECs in outdoor: RAN
- MECs in indoor: Wifi or 3G/4G access points
- MEC testbeds
 - 5G test network at Oulu, Finland
 - Industrial testbeds: Nokia and China

Other Open Issues

• Security

• The application data movement: possible with encryption

- Pricing
- Web interface
 - Not optimized for mobile
- Other
 - Privacy, openness, multiservices, robustness, resilience

Content Delivery and Caching

- The edge computing technology plays a key role in website performance optimization
 - caching HTML content
 - reorganizing Web layout
 - resizing Web components

Improving Short-lived Web Traffic Performance

- How to compensate the throughput gap caused by the computation latency during short-lived application loading by only adapting the transport-layer protocol?
 - not affected by any application layer constraints such as HTTPs content encryption and security policy
 - embed network intelligence at mobile edge
- Through the optimization of TCP initial window (IW) size
 - short-lived applications such as webpage downloading, where content downloading is normally completed during the TCP slow-start phase
- Mobile edge's awareness of the computation time on the device
 - does play an important role in webpage downloading performance

MEC Support

- Optimize TCP IW
- DNS response with context information

Figure 2: Throughput gap due to computation activity

How MEC Server Obtains Context Info

- Not every web content but popular web pages
- Testing as a service (TaaS)
 - MEC server performs test/measurement services
 - Google firebase or Flywheel
 - Computation latency and total size of content can be obtained

Performance Evaluation

- real LTE-A testing infrastructure
- use QUIC as the underlying protocol
- when the computation latency accounts for less than 20% of the overall downloading time,
 - the throughput gap can be fully compensated.

Figure 3: Proof-of-concept implementation in LTE-A test bed

- When the proportion of computation latency varies between 20% and 50%,
 - the throughput can be improved up to 34.5%. Such improved downloading throughput has led to the reduced webpage downloading time by up to 25.1%.

5: Optimal IW in real LTE-A network (varying content size)

Recent Changes in Web

- HTTPS
 - TLS + HTTP
- QUIC
 - UDP + TLS + TCP Congestion Window algorithm
- HTTP/2: low latency protocol
 - Single TCP connection, Server push, Header compression, binary, multiple streams

- TCP initial window
 - IETF RFC 6928 a proposal to increase the TCP Initial Window to 10 segments: 10 * 1432 bytes = 14KB for the initial web page

Latency vs Bandwidth impact on Page Load Time

"To speed up the Internet at large, we should look for more ways to bring down RTT. What if we could reduce cross-atlantic RTTs from 150 ms to 100 ms? This would have a larger effect on the speed of the internet than increasing a user's bandwidth from 3.9 Mbps to 10 Mbps or even 1 Gbps." - Mike Belshe

bit.ly/http2-opt

Questions about supporting mobile web/app performance by MEC server

- TCP configuration?
 - Scalability issue for every web domain and TCP connections
 - Security issue for kernel-level TCP configuration
 - Root privilege is required
- QUIC configuration
 - Application layer configuration: CUBIC + TLS + UDP
 - Only by Google servers

Discussion

- Improving end-to-end application performance by middle box (MEC/proxy/CDN)
 - Challenges
 - Encryption: TLS, (DNS)
 - Security: certificate pinning, HSTS
 - Scalability
 - Possibilities
 - Caching/proxy: Amazon Silk, Opera mini
 - CDN: Akamai/Limelight, Netflix
 - HTTP/2 optimization with TaaS
 - DNS, server push, compression, concatenating resources, inline resources

Speeding up Web Page Loads with Shandian, USENIX 2016