Design and Implementation for Demand-Responsive Cross-Layer Networking (part II)

Paper review on optical networking in ACM/USENIX community

Zhizhen Zhong
Tsinghua University & UC Davis

zhongzz14@mails.tsinghua.edu.cn, zzzhong@ucdavis.edu

11 May 2018

Networks Lab Group Meeting
NSDI’18 Overview

- NSDI’18 Overview
- Overview of optical networking in ACM and USENIX
- Optical networking paper review
- Some takeaways
NSDI’18, 40 papers in 12 topics: new hardware, distributed systems, traffic management, NFV and hardware, web and video, performance isolation and scaling, congestion control, cloud, diagnosis, fault tolerance, physical layer, configuration management.
NSDI’18 research spotlights

NetChain: Scale-Free Sub-RTT Coordination
Xin Jin, Johns Hopkins University; Xiaozhou Li, Barefoot Networks; Haoyu Zhang, Princeton University; Nate Foster, Cornell University; Jeongkeun Lee, Barefoot Networks; Robert Soulé, Università della Svizzera italiana; Changhoon Kim, Barefoot Networks; Ion Stoica, UC Berkeley

Using programmable switches to design new coordination protocol

zkLedger: Privacy-Preserving Auditing for Distributed Ledgers
Neha Narula, MIT Media Lab; Willy Vasquez, University of Texas at Austin; Madars Virza, MIT Media Lab

Distributed ledgers for financial systems enabled by networking
Fastpass: A Centralized “Zero-Queue” Datacenter Network

Fastpass concept

- In Fastpass, a logically centralized arbiter controls all network transfers.
- Because the arbiter knows about all current and scheduled transfers, it can choose timeslots and paths that yield the “zero-queue” property: the arbiter arranges for each packet to arrive at a switch on the path just as the next link to the destination becomes available.
- Fastpass incorporates two fast algorithms: the first determines the time at which each packet should be transmitted, while the second determines the path to use for that packet.
- Network scale time synchronization is required.
Path selection

Figure 6: Multicore allocation: (1) allocation cores assign packets to timeslots, (2) path selection cores assign paths, and (3) communication cores send allocations to endpoints.
Path selection

Example: Packet from A to B

5μs A → Arbiter "A has 1 packet for B"
1-20μs Arbiter timeslot allocation & path selection
15μs Arbiter → A "@t=107: A → B through R1"
no queuing A → B sends data
Queueing performance

- Fastpass reduces the median switch queue occupancy from 4.35 Megabytes in the baseline to just 18 kilobytes with Fastpass, a reduction of a factor of 242×
- Fastpass reduces the end-to-end round-trip time (RTT) for interactive traffic when the network is heavily loaded by a factor of 15.5×, from a median of 3.56 ms to 230 μs
Figure 9: Each connection’s throughput, with a varying number of senders. Even with 1s averaging intervals, baseline TCP flows achieve widely varying rates. In contrast, for Fastpass (bottom), with 3, 4, or 5 connections, the throughput curves are on top of one another. The Fastpass max-min fair timeslot allocator maintains fairness at fine granularity. The lower one- and two-sender Fastpass throughput is due to Fastpass qdisc overheads (§7.2).
Experiment: request queueing

Figure 10: As more requests are handled, the NIC polling rate decreases. The resulting queueing delay can be bounded by distributing request-handling across multiple comm-cores.
Experiment: communication control overhead

- The network overhead of communication with the arbiter is 1-to-500 for request traffic and 1-to-300 for allocations for the tested workload.

Figure 11: The arbiter requires 0.5 Gbits/s TX and 0.3 Gbits/s RX bandwidth to schedule 150 Gbits/s: around 0.3% of network traffic.
Experiment: path selection

- Fig. 12 shows that the processing time increases with network utilization until many of the nodes reach full degree (32 in the tested topology), at which point the cost of pre-processing the graph decreases, and path selection runs slightly faster.
Experiment: Facebook experiment

- Cluster traffic is bursty, but most of the time utilizes a fraction of network capacity

Figure 13: Distribution of the sending and receiving rates of one production server per 100 microsecond interval over a 60 second trace.
Experiment: Facebook experiment

Figure 14: 99th percentile web request service time vs. server load in production traffic. Fastpass shows a similar latency profile as baseline.

Figure 15: Live traffic server load as a function of time. Fastpass is shown in the middle with baseline before and after. The offered load oscillates gently with time.

Figure 16: Median server TCP retransmission rate during the live experiment. Fastpass (middle) maintains a $2.5 \times$ lower rate of retransmissions than baseline (left and right).

- Fig. 14 shows that the 99th percentile web request service time using Fastpass is very similar to the baseline’s. The three clusters pertain to groups of machines that were assigned different load by the load-balancer.
- Fig. 15 shows the cluster’s load as the experiment progressed, showing gentle oscillations in load. Fastpass was able to handle the load without triggering the aggressive load-reduction.
Some takeaways

- Research approach
 - Theoretical analysis: resource allocation.
 - Experimental demonstration: system performance.
- Scalability can be evaluated by real-world implementation.
- Distributed systems.
- Touch the boundary of optical networking and L3-L4 networking.
Thank you for attention!

Zhizhen Zhong
Tsinghua University & UC Davis
zhongzz14@mails.tsinghua.edu.cn, zzzhong@ucdavis.edu
11 May 2018
Networks Lab Group Meeting