# **Reliable Slicing**

Andrea Marotta

Group Meeting Friday, May 3, 2019



### **Outline**

- Slicing scenarios
  - Slice isolation
  - Virtualization techniques
- Slicing protection
  - PAC vs PAL
  - Protection strategies
- Problem formulation





## **Integrated Optical-Wireless Reliable Slicing**

• Can we integrate mobile network resiliency and Metro-Access network protection in mobile multi-connectivity scenarios?





### Slicing in Radio Access Networks (1)

- Radio Access Network (RAN) slicing is implemented at the radio scheduler
- Each Radio Access Point should support more than one slice







# Slicing in Radio Access Networks (1)

- Radio Access Network (RAN) slicing can be implemented at the radio scheduler
- Each Radio Access Point should support more than one slice







### Virtual service chains for mobile network slicing



### **Slicing Overview**





### Slice Isolation (1)





# Slice Isolation (L0)

- Dedicated network
- Each slice has its own elements
- High cost





Slice 1: High Capacity – No protection req.

## Slice Isolation (L1)

• Common Radio Unit

Slice 1: High Capacity – No protection req.





### Slice Isolation (L2)

- Common Distributed Unit
- Slicing is implemented at the radio scheduler

Slice 1: High Capacity – No protection req.





### Slice Isolation (L3)

- Common Central Unit
- Dedicated physical transport network

(( ( ))

Hard slicing (dedicated wavelengths, TDM resources)

Hardest (dedicated fibers, routing resources)





Slice 1: High Capacity – No protection req.

### Slice Isolation (L3)

- Common Central Unit
- Dedicated physical transport network

(( ( ))

Hard slicing (dedicated wavelengths, TDM resources)

**Common Segment** 

Hardest (dedicated fibers, routing resources)



fibers serving other slices

Slice 1: High Capacity – No protection req.



### Slice Isolation (L4)

- Common Central Unit
- Without dedicated physical transport network

Slice 1: High Capacity – No protection req.





### Slice Isolation (L5)

- Common Core Network
- No logical elements per slice

Slice 1: High Capacity – No protection req.





### **Slicing Overview**





### Virtual Networks vs. Service Chains (1)

- Slice:
  - Set of virtual node and virtual links with capacity requirements
  - Associated to reliability requirements
  - Dedicated transport





### Virtual Networks vs. Service Chains (1)

- Virtual network emebedding
  - Each virtual node is mapped on a separate substrate node
  - Each virtual link is mapped to one or multiple physical links





### Virtual Networks vs. Service Chains (1)

- Service chains
  - Functions are provisioned to compose the service chain
  - Several functions can be mapped on the same node





### **Slicing Overview**





### **Slice Protection Overview**





### **Protection at Lightpath**

- Each lightpath has its own protection
  - $l_i^w$  and  $l_i^p$  form the p-lightpath  $l_i$
  - Slice 1 uses p-lightpaths  $l_1$  and  $l_2$

Slice 1: High Capacity – No protection req.

Slice 2: Low capacity - Reliable





### **Protection at Lightpath**

- Each lightpath has its own protection
  - $l_i^w$  and  $l_i^p$  form the p-lightpath  $l_i$
  - Slice 1 uses p-lightpaths  $l_1$  and  $l_2$
  - Slice 2 uses p-lightpaths  $l_1$  and  $l_2$  (but does not need protection)

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ 



Slice 1: High Capacity – No protection req.

Slice 2: Low capacity - Reliable

**UCDAVIS** 

### **Protection at Lightpath (2)**

- Each lightpath has its own protection
  - Connection unaware
  - Uses bandwidth unefficiently
  - Minimises the number of grooming ports

Slice 1: High Capacity – No protection req.

Slice 2: Low capacity - Reliable





### **Protection at Connection**

- Each lightpath is a separated entity
  - Slice 1 uses lightpaths  $l_1$  and  $l_3$  as working
    - $l_2$  and  $l_4$  as protection

Slice 1: High Capacity – No protection req.

Slice 2: Low capacity - Reliable





### **Protection at Connection**

- Each lightpath is a separated entity
  - Slice 1 uses lightpaths  $l_1$  and  $l_3$  as working
    - $l_2$  and  $l_4$  as protection
  - Slice 2 uses only lightpaths  $l_1$  and  $l_3$  as working

Slice 1: High Capacity – No protection req.

Slice 2: Low capacity - Reliable





### **Protection at Connection**

- Each lightpath is a separated entity
- Connection-aware
- Packs connections more efficiently

Higher number of grooming ports

Slice 1: High Capacity – No protection req.
Slice 2: Low capacity - Reliable





### **Slice Protection Overview**





Link protection

Slice 1: High Capacity – No protection req.





Node protection

Slice 1: High Capacity – No protection req.



Subpath protection

Slice 1: High Capacity – No protection req.



• End to end protection

Slice 1: High Capacity – No protection req.



# **Reliable Slicing Overview**





#### Parameters

```
N_P
        Set of physical nodes in the network
        Set of virtual functions. We
 N_{V}
                                               assume N_V
        {RU, DU, CU, NGC}
 N_S
        Set of slice requests
        No. of fibers interconnecting physical nodes m and n
F_{mn}
        No. of wavelengths per link
  W
        Capacity of each wavelength
 K_u
        Computational capacity required by deployment of virtual func-
        tion u on a physical node
 C_n
        Computational capacity of physical node n
        1 if virtual function u can be deployed at physical node n
M_{un}
        R: N_s \to \{1,0\} 1 if slice s requires protection
R(s)
        D: N_s \to \{1,0\} 1 if slice s requires dedicated transport
D(s)
```



#### Variables

| $z_{mn}^{s,ij}$         | No. of lightpaths between physical nodes $i$ and $j$ passing through link $(m, n)$ and serving slice $s$                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $\zeta_{mn}^{s,ij}$     | No. of backup lightpaths between physical nodes $i$ and $j$ passing through link $(m, n)$ and serving slice $s$           |
| $x_{i,i}^s$             | No. of lightpaths between physical nodes $i$ and $j$ serving slice $s$                                                    |
| $x_{ij}^s \ \xi_{ij}^s$ | No. of backup lightpaths between physical nodes $i$ and $j$ serving slice $s$                                             |
| $w_{ij}^{sbe} \\$       | Capacity provisioned from physical node $b$ to $e$ through lightpaths going for node $i$ to node $j$ for slice $s$        |
| $\omega_{ij}^{sbe}$     | Backup capacity provisioned from physical node $b$ to $e$ through lightpaths going for node $i$ to node $j$ for slice $s$ |
| $l_{be}^s$              | Capacity that needs to be provisioned from physical node $b$ to $e$ for slice $s$                                         |
| $h_{be}^{suv}$          | 1 if end points of virtual link $(u, v)$ of slice $s$ are mapped to physical nodes $b$ and $e$                            |
| $y_{un}$                | 1 if virtual function $u$ is deployed at physical node $n$                                                                |



Objective function:

minimize 
$$\sum_{s} \sum_{i,j} \sum_{m,n} z_{mn}^{s,ij}$$

Such that:

#### Working

$$\sum_{\substack{j \in N_P \\ j \neq i}} w_{ij}^{sbe} - \sum_{\substack{j \in N_P \\ j \neq i}} w_{ji}^{sbe} = \begin{cases} l_{be}^s & \text{if } i = b \\ -l_{be}^s & \text{if } i = e \\ 0 & \text{otherwise} \end{cases}$$

$$\forall i, b, e \in N_P, s \in N_S$$

$$\sum_{\substack{n \in N_P \\ n \neq m}} z_{mn}^{sij} - \sum_{\substack{n \in N_P \\ n \neq m}} z_{nm}^{sij} = \begin{cases} x_{ij}^s & \text{if } m = i \\ -x_{ij}^s & \text{if } m = j \\ 0 & \text{otherwise} \end{cases}$$

$$\forall m, i, j \in N_P, s \in N_S$$

#### Backup

$$\sum_{\substack{j \in N_P \\ j \neq i}} \omega_{ij}^{sbe} - \sum_{\substack{j \in N_P \\ j \neq i}} \omega_{ji}^{sbe} = \begin{cases} l_{be}^s & \text{if } i = b \\ -l_{be}^s & \text{if } i = b \\ 0 & \text{otherwise} \end{cases}$$

$$\forall i, b, e \in N_P, s \in N_S : R(s) = 1$$

$$\sum_{\substack{n \in N_P \\ n \neq m}} \zeta_{mn}^{sij} - \sum_{\substack{n \in N_P \\ n \neq m}} \zeta_{nm}^{sij} = \begin{cases} \xi_{ij}^s & \text{if } m = i \\ -\xi_{ij}^s & \text{if } m = j \\ 0 & \text{otherwise} \end{cases}$$

$$\forall m, i, j \in N_P, s \in N_S : R(s) = 1$$



#### Such that:

$$z_{mn}^{sij} + z_{nm}^{sij} + \zeta_{mn}^{sij} + \zeta_{nm}^{sij} \le 1 \forall i, j, m, n \in N_P, s \in N_S$$

Link disjointness (PAC)

$$\sum_{\substack{b,e \in N_P \\ s \in N_S}} w_{ij}^{sbe} \le C \times x_{ij} \forall i, j \in N_P, s \in N_S$$

$$\sum_{\substack{b,e \in N_P \\ s \in N_S}} \omega_{ij}^{sbe} \le C \times \xi_{ij} \forall i, j \in N_P, s \in N_S$$

$$\sum_{i,j\in N_P} (z_{mn}^{ij} + \zeta_{nm}^{ij}) \le W \times F_{mn} \quad \forall m, n \in N_P$$

Capacity constraints



#### • Such that:

$$h_{be}^{suv} = y_{ub}^S \times y_{ve}^S \quad \forall b, e \in N_P, u, v \in N_V, s \in N_S$$

$$\sum_{n \in N_P} y_{un}^s = 1 \quad \forall u \in N_V, s \in N_S$$

$$\sum_{\substack{u \in N_V \\ s \in N_S}} y_{un}^s \times K_u^s \le C_n \quad \forall u \in N_V, n \in N_P, s \in N_S$$

$$y_{un}^s \leq M_{un} \quad \forall n \in N_P, u \in N_V, s \in N_S$$

Node mapping constraints



# Thank you

