# Content Connectivity Resiliency

Giap Le: Ph.D. Candidate, Computer Networks Lab, UC Davis

Supervisors: Distinguished Prof. Mukherjee and Prof. Tornatore

Friday, November 22, 2019



### Outline

- Problem statement: review
- Logical topology design
- Optimization problem relaxation



#### Problem Statement: Review

- Give a logical topology
- Map logical topology over physical topology with content connectivity after k link failures
- Define: Content connectivity = datacenter reachability in IP layer
- ANTS paper:
  - ✓ Generic ILP for arbitrary k
  - ✓ Necessary conditions for feasible solution

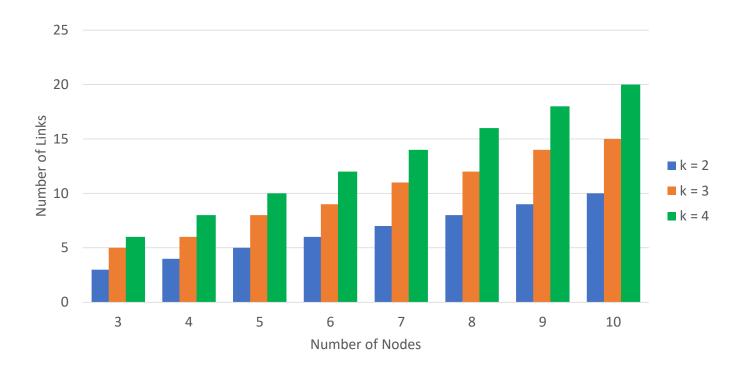


### Operator: What Can be Flexible?

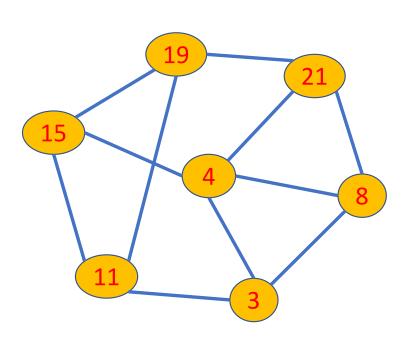
- Physical topology: fixed
- Logical topology:
  - ✓ Logical nodes = Central Offices (CO) require content: fixed
  - ✓ How logical nodes be connected: flexible
  - ✓ Datacenter number and location: flexible (considering hardware available)
- ullet Goal: Fulfill content connectivity against k link failures with minimal network resources



### # Link Lower Bound of k-Connected Graph


- Necessary condition for content connectivity against k-1 link failures: k-connected graph (k-link connected)
- Lower bound of number of links of k-connected graph, H(n, k):

$$\operatorname{ceil}\left[\frac{nk}{2}\right]$$


where H(n, k) is k-connected Harary graph of n nodes



# Minimal Number of Links, k-Connected Graph



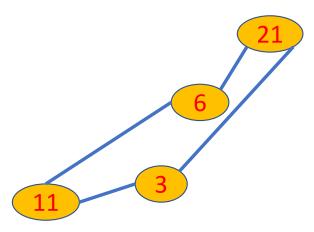




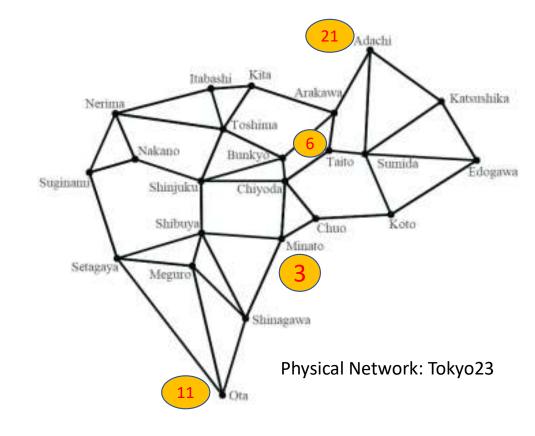
Logical Topology: H(7,3)






| CC-1, 1 Datacenter |      |
|--------------------|------|
| DC Location        | Cost |
| 3                  | 54   |
| 4                  | 54   |
| 8                  | 54   |
| 11                 | 54   |
| 15                 | 54   |
| 19                 | 54   |
| 21                 | 54   |

| CC-1, 2 Datacenters |      |
|---------------------|------|
| DC Location         | Cost |
| 3, 4                | 54   |
| 11, 21              | 54   |
| 8, 15               | 54   |
| 3, 19               | 54   |

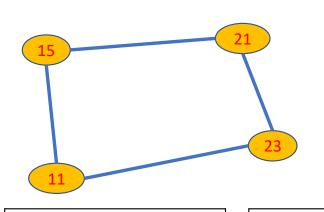

| CC-1, 3 Datacenters |      |
|---------------------|------|
| DC Location         | Cost |
| 3, 4, 8             | 54   |
| 8, 15, 21           | 54   |

- ✓ Interestingly, there is no difference
- ✓ Reason: logical and physical topos are uniform distributed
- ✓ Consequently, logical links takes nonoverlapping paths = shortest paths



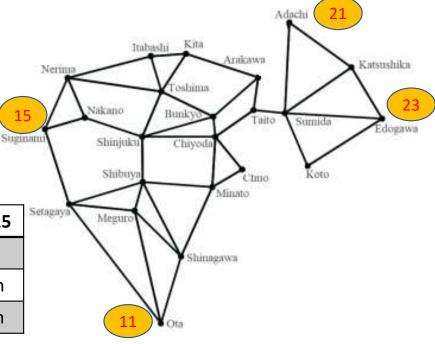


- ✓ All nodes aligned on a line
- ✓ Expected:
  - > Shorted paths: overlapping
  - > CC constraints: avoid overlap
  - > DC location: key role






| Datacenter at 11 and 21 |      |
|-------------------------|------|
| Scenario                | Cost |
| NC-1                    | 24   |
| CC-1                    | 26   |


| Datacenter at 3 and 6 |      |
|-----------------------|------|
| Scenario              | Cost |
| NC-1                  | 26   |
| CC-1                  | 26   |





| Datacenter at 15 and 23 |             |
|-------------------------|-------------|
| Scenario                | Cost        |
| NC-1                    | No solution |
| CC-1                    | 32          |

| Datacenter at 11 and 15 |             |
|-------------------------|-------------|
| Scenario                | Cost        |
| NC-1                    | No solution |
| CC-1                    | No solution |



Physical Network: Modified Tokyo23

#### Ongoing work:

✓ DC placement with highest availability

