Slice-Aware Service Restoration with Recovery Trucks for Optical Metro-Access Networks

Sifat Ferdousi1, Massimo Tornatore1,2, Sugang Xu3, Yoshinari Awaji3, and Biswanath Mukherjee1

1University of California, Davis, USA 2Politecnico di Milano, Italy 3National Institute of Information and Communications Technology, Japan

Session: ONS3: Intelligent Optical Networks
Introduction

User demands and services are evolving...

A new generation of optical metro networks is needed to turn the vision of “Smart Cities” into reality

• From a rigid ring-based aggregation infrastructure to a composite network-and-computing ecosystem to support next-generation 5G services

• Several technical enablers:
 ▪ Increased reconfigurability enabled by SDN
 ▪ Integration of optical and wireless access networks
 ▪ Metro nodes becoming edge data centers (edge computing)
 ▪ Network slicing to logically partition network, computing, and storage resources
 ▪ …
Metro-Access Networks

User demands and services are evolving...

so is the network

- 75% of total metro traffic is terminated within the metro network, as video, data and web content is increasingly generated at the metro networks
Evolution of Metro-Access Networks

Edge computing and SDN
Evolution of Metro-Access Networks

Network Slicing

This transformation calls for trustworthy, high-availability, and sliceable next-generation metro-area networks that are resilient against disasters
Recovery for Metro-Access Networks

• Post-disaster recovery in metro access is different from that in core networks
 • Too expensive for disaster resiliency
 • Much less redundant than core

• After disaster, utmost priority: minimize service downtime (recover network asap)
 • Slice re-provisioning may not be possible with available resources and considering locality of services
 • Control plane managing the slices can also be affected by disasters

Utilize equipment for "temporary relief/service" only in case of disaster instead of preplanning lot of redundant capacity
Rapid network recovery using deployable recovery units

- In the post-disaster phase, recovery trucks can provide both repair and temporary relief/service while repair work is going on.

"Slice-aware" routing and deployment strategy to minimize downtime penalty and ensure fast restoration of important slices.
Slice-Aware Service Restoration

• Model the problem based on classical *vehicle routing problem*

• Recovery trucks provide both repair and *temporary relief/service* while repair work is going on (unlike general network recovery)

• Develop a “slice-aware” routing and deployment strategy for heterogeneous recovery trucks to heterogeneous failure sites

 Minimize downtime *penalty* - fast restoration of important slices
Slice-Aware Service Restoration with Recovery Trucks

• Given: network topology, set of network slices, set of failed nodes, set of heterogeneous trucks

• Output
 • Routes for recovery trucks

• Objective: Minimize service disruption penalty of slices

• Solution Approach
 • Mathematical model (MILP)
Compared schemes

• Deployment schemes to be compared

 • Slice-aware service restoration with temporary service (minimize penalty)
 • Slice-unaware service restoration with temporary service (minimize travel time)
 • Slice-aware service restoration without temporary service (repair only)
Simulation Setup
Results

<table>
<thead>
<tr>
<th></th>
<th>Slice-aware</th>
<th>Slice-unaware</th>
<th>Slice-aware w/o temp. relief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative penalty</td>
<td>29.04</td>
<td>41.09</td>
<td>47.88</td>
</tr>
</tbody>
</table>

- 29% savings in penalty
- 38% savings in penalty
Results

- **60% reduction in service disruption penalty**
- **46% service-restoration time savings**
Conclusion

• Our slice-aware service-restoration approach can achieve significant reduction in service-disruption penalty and savings in service-restoration time in a post-disaster optical metro-access networks