Reliable Provisioning of Deadline-driven Content Requests Using Multipath, Multidatacenter Anycasting

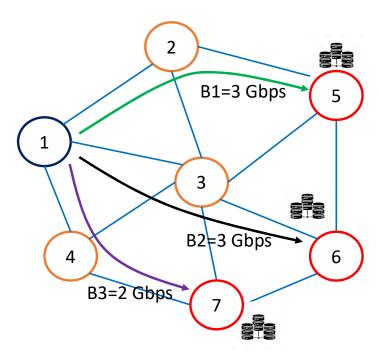
Giap Le, Computer Networks Lab, UC Davis Friday, September 18, 2020

Previous works

- Given information in a request:
 - ✓ Desired bandwidth
 - ✓ Acceptable degraded service
 - ✓ Holding time
- So, the outputs are:
 - ✓ Just enough bandwidth for the request (total/sum BW)
 - ✓ Number of paths and BW on each path to guarantee degraded service
 - ✓ How to route paths

Out current scenario

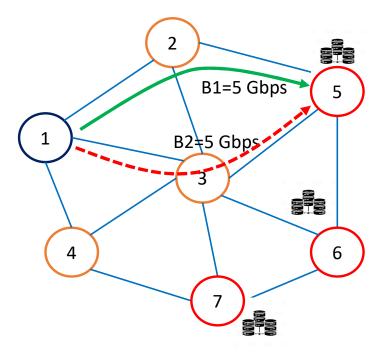
- A content request with given information:
 - ✓ Content size
 - ✓ Deadline to deliver (this parameter is without tolerance)
- Major outputs:
 - ✓ Total/sum BW for the request (can be more than enough BW to even meet the deadline if one random single-link failure happens)
 - ✓ Number of paths/DCs
 - ✓ BW on each path
 - ✓ Routing and scheduling of paths
 - ✓ Multipath previsioning = inherently degraded service



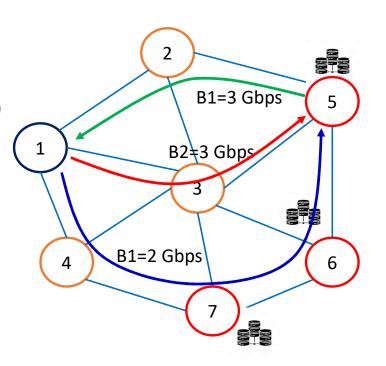
Scenarios

- Node 1 requests for a 100 GB content in deadline is 20 seconds
- Just enough BW: 5 Gbps (total)
- Example optimal outputs: Total BW 8 Gbps

$$✓$$
 B2 = 3 Gbps


- If one of paths is disconnected, there is till at least 5 Gbps to meet the deadline
- We may not need a degraded service input because the above constraint implies degraded service

Reference model 1


- Two paths to the same DC
- Number of paths: always 2
- Primary path BW (green) = just enough BW
- Backup path BW (dashed) = just enough BW

Reference model 2

- Multiple paths to the same DC
- Number of paths: variable
- Total BW may be more than enough (5 Gbps)
- In case one paths is down, there is still BW enough to meet the deadline
- Expectations: our current proposed model outperforms models 1 and 2 in terms of acceptance rate, network resource usage

