Flexible Architectures for Next-Generation Optical Networks

Tanjila Ahmed
Department of Electrical and Computer Engineering
University of California, Davis
Sept 25, 2020

Outline

- Introduction
- Contribution I: High-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution
- Contribution II: Dynamic routing, spectrum, and modulation format assignment in co-existing fixed/flex-grid optical networks
- Contribution II: Cost-efficient C+L Bands Upgrade Strategies to Sustain Long-term Traffic Growth.
- Conclusion and future research ideas

Flexible Network Architectures

A flexible network solution enables customization of network operations according to the changing network demand

Source: https://www.techspot.com/article/1582-state-of-5g-wireless/

Outline

- Introduction
- Contribution I: High-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution
- Contribution II: Dynamic routing, spectrum, and modulation format assignment in co-existing fixed/flex-grid optical networks
- Conclusion and future research ideas

Agenda

- ✓ Introduction to the problem
- ✓ Proposed solution
 - PTP time synchronization in an optical datacenter network with zero-overhead transmission and microsecond-accuracy
- ✓ Results
- √Summary and future work

Time Synchronization

Coordinating independent clocks running on different machines with a standard time

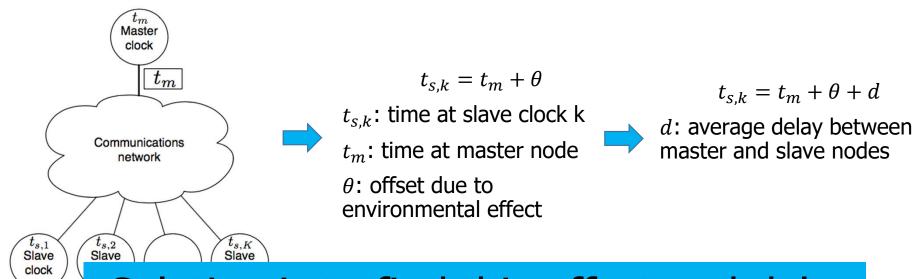
Atomic Clocks

Use resonance frequencies of atoms

Global Navigation Satellite Systems:

Periodically synchronize to atomic clocks

Oscillator Type	Accuracy	Cost	
Quartz crystal	10^{-5} to 10^{-4}	Inexpensive	
Rubidium	10^{-9}	\$800 USD	
Cesium	10^{-13} to 10^{-12}	\$50000 USD	

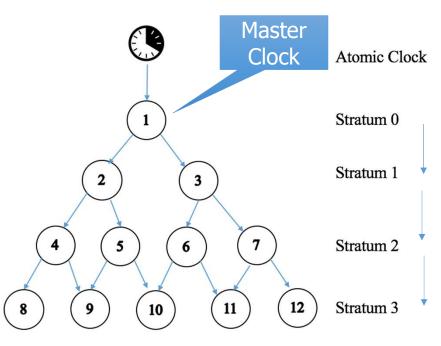

Atomic Clock, Boulder, CO, USA

Source: https://en.wikipedia.org/wiki/NIST-F1

Time Synchronization: Distributed Systems

Multiple clocks in a distributed system needs to maintain same global time!

Solution is to find this offset and delay


Time Synchronization Protocols: NTP

Hierarchical master-slave topology Millisecond-accuracy **Network Time Protocol** Slave clocks (NTP) redistribute time information **Update Interval** (10 min) **UCDAVIS**

10/04/20

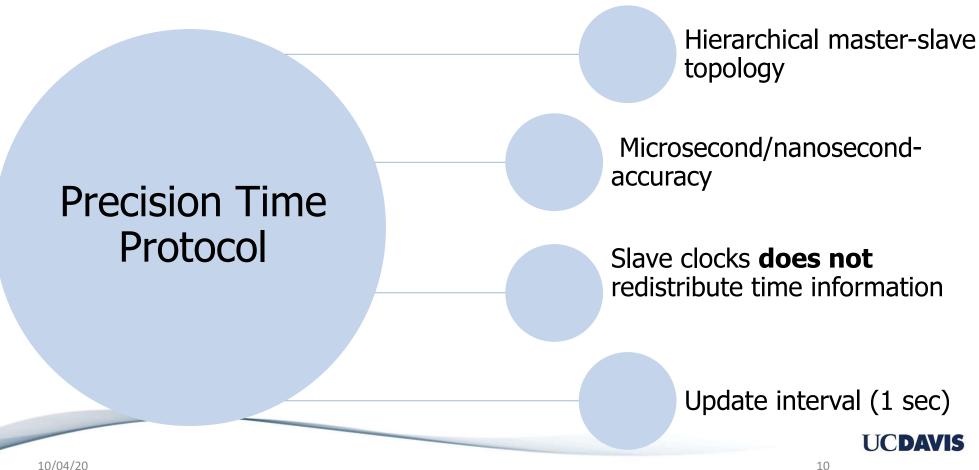
8

Time Synchronization Protocols: NTP

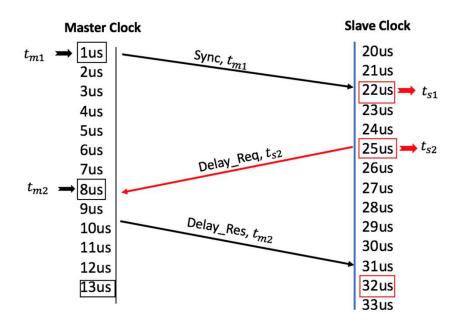
Stratum denotes distance from the master clock

Delay, d_1

Delay,
$$d_2 = d_1 + d_2$$


Delay,
$$d_3 = d_1 + d_2 + d_3$$

- Queueing delay
- Processing delay
- Routing path
- Cable length

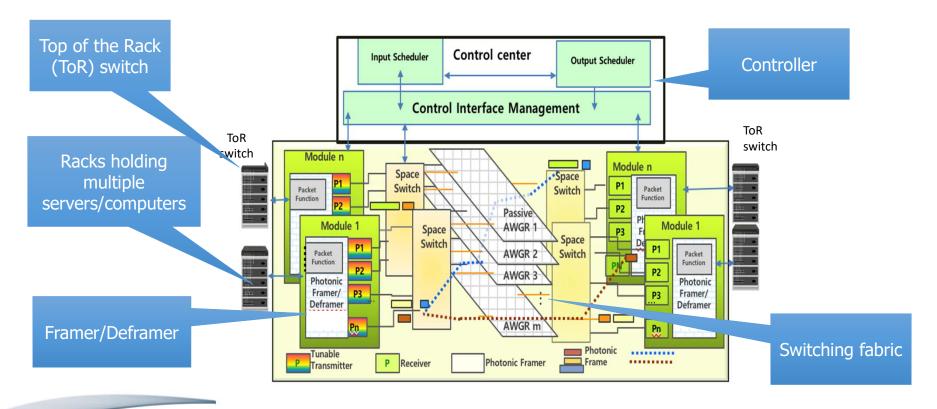

Source: https://www.worldtimesolutions.com/products/ntp_server.html

Time Synchronization Protocols: PTP

10/04/20

Time Synchronization Protocols: PTP

$$Avg \ path \ delay = \frac{(t_{s1} - t_{m1}) + (t_{m2} - t_{s2})}{2}$$


$$= \frac{(22-1)+(8-25)}{2} = 2 \ us$$

$$Time \ offset = \ t_{s1} - t_{m1} - Avg \ path \ delay$$

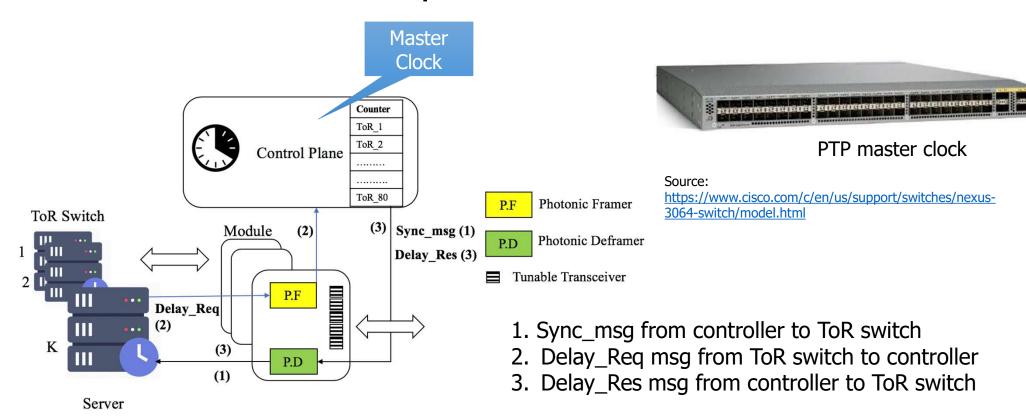
$$= 22 - 1 - 2 = 19 \ us$$

Slave clock time =
$$32 - 19 = 13$$
 us

Packet Switched Optical Datacenter Network (PSON)

Problem Statement

- Given:
 - PSON datacenter Architecture
 - Three traffic distributions: Lognormal, Pareto, Uniform
 - PTP enabled ToR switches
 - Controller with atomic/GPS clock information
- Objective:
 - Synchronize ToR switches in a PSON with microsecond accuracy.


Proposed Algorithm

Algorithm 1 PTP Time Synchronization Through In-Band Transmission

- 1: **Input:** packet size, traffic load, link bandwidth of datacenter, number of ToR switches, resynchronization-interval time;
- 2: Output: Time error;
- 3: Initialize counter times for all ToR switches (limit time at resynchronization-interval time);
- 4: Create a list of candidate ToR switches which have counter time equal to resynchronizationinterval time (that means this ToR switch needs to be synchronized);
- 5: **if** ToR switch ϵ candidate list **then**
- 6: wait_sync_time ← wait time for data packets in deframer to send 'sync' message to
- 7: candidate ToR switches with packets generated from a specific traffic distribution;
- 8: wait_delay_req_time ← wait time for data packets in framer to send 'delay request'
- 9: message to controller with packets generated from the same traffic distribution;
- 10: counter time of that $ToR \leftarrow zero$;
- 11: Time error ← wait_sync_time + wait_delay_req_time;
- 12: Candidate list \leftarrow candidate list synced TOR;
- 13: **else**
- 14: counter time of that $ToR \leftarrow counter time++$;
- 15: end if
- 16: Repeat from Step 4;

Proposed Method

UCDAVIS

Simulation setup

- Number of ToR Switch: 80
- Number of Framer/deframer: 80
- Maximum length of PTP message: ~300 bits
- Data packet length: 200 to 1400 bytes
- Re-synchronization interval: 1 second

Performance Evaluation Metric

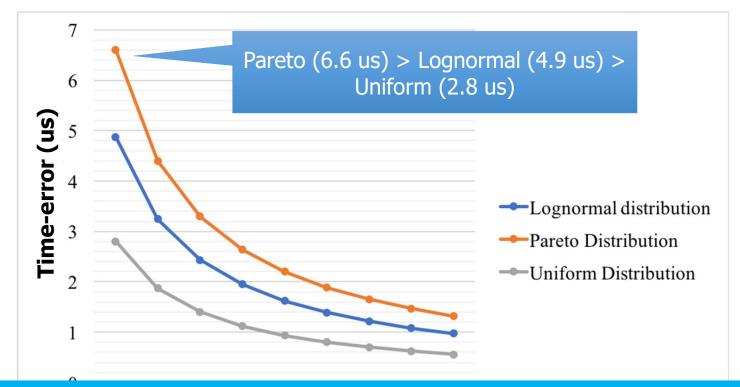
 $Time - error = Sync_msg_{wait} + Delay_req_{wait} + Delay_res_{wait}$

 $Sync_msg_{wait}$ = wait time for data packets in deframer to send 'Sync'message to ToR switches

 $Delay_req_{wait} = for \ data \ packets \ in \ framer \ to \ send' \ Delay \ request',$ $message \ to \ controller$

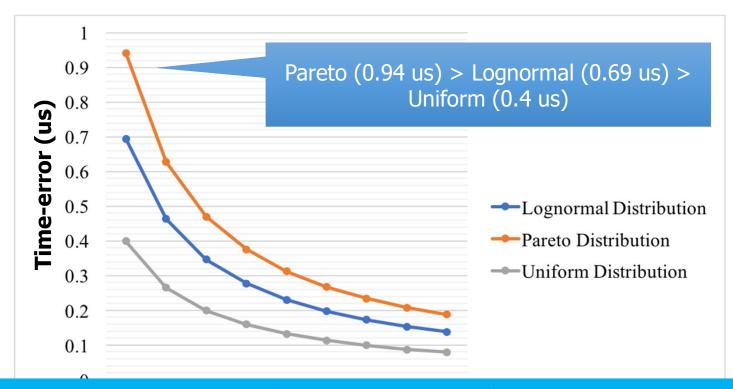
 $Delay_res_{wait} = for\ data\ packets\ in\ deframer\ to\ send\ ' Delay\ response',$ $message\ to\ ToR\ switches$

- Traffic load
- Packet-length
- Traffic distribution


Results: Time-error vs. Load (Lognormal)

Time-error decreases with increasing load and decreasing packet-length

10/04/20 UCDAVIS

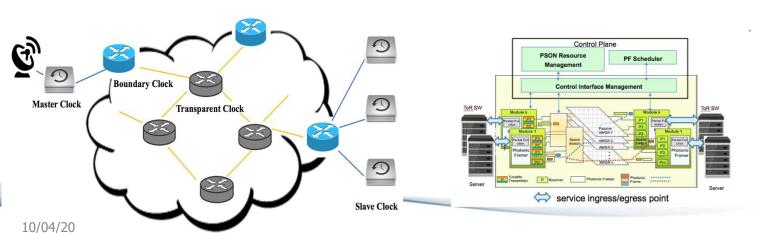

Results: Time-error vs. Load (1400 bytes)

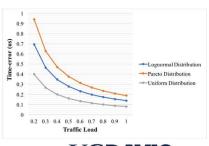
Time-error is the highest for packet length of 1400 bytes. Pareto distribution obtains highest time-error among others

10/04/20

Results: Time-error vs. Load (200 bytes)

Time-error is the lowest for packet length of 200 bytes. Pareto distribution obtains highest time-error among others


10/04/20


Summary and Future Research Ideas

- Tested performance of PTP for a PSON datacenter architecture with zerooverhead and microsecond-accuracy.
- If the data packets are short and load is high PTP can achieve submicrosecond accuracy

Future work:

- Implementing boundary clocks with multiple sub-networks
- Implementing an traffic adaptive resynchronization-time transmission

UCDAVIS

Publications

• T. Ahmed, S. Rahman, M. Tornatore, K. Kim, B. Mukherjee, "A survey on high-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution," *Photonic Network Communications*, vol. 36, no. 1, pp. 56-67, Aug. 2018.

Outline

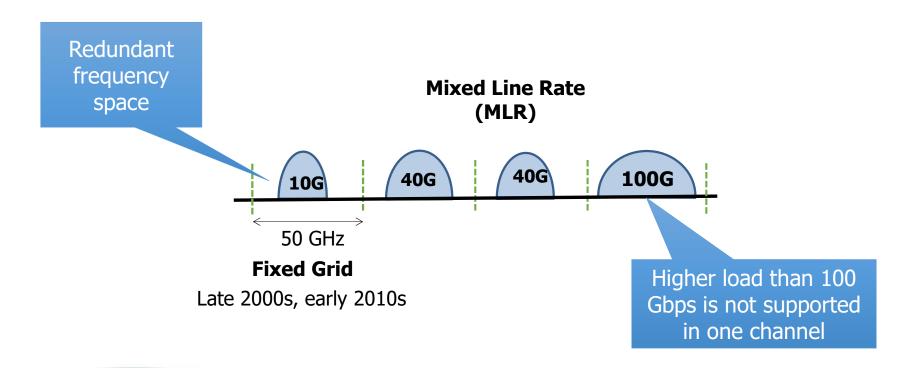
- Introduction
- Contribution I: High-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution
- Contribution II: Dynamic routing, spectrum, and modulation format assignment in co-existing fixed/flex-grid optical networks
- Conclusion and future research ideas

Agenda

- ✓ Introduction to the problem
- ✓ Proposed solution
 - Spectrum efficient dynamic routing, spectrum, and modulation format assignment in a co-existing fixed/flexgrid network
- ✓ Results
- ✓ Summary and future work

Fixed-Grid Optical Link

Single Line Rate (SLR)


Fixed Grid

Years 1990s, 2000s

25

Fixed-Grid Optical Link

Flex-Grid Optical Link

Supports granular frequency

Improvement in spectrum usage

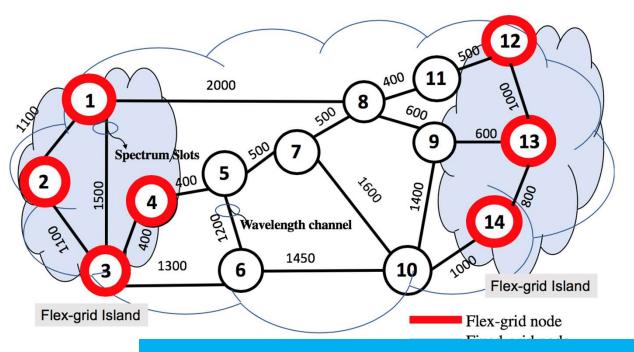
Bit-rate (Gbps)	Fixed (GHz)	Flex (GHz)
40	50	25
100	50	37.5
400	200	125

12.5 GHz

Flexible

Grid

40G/100G/


400G

Supports higher load using super-channel

Starting 2011, ongoing research...

Migration from Fixed to Flex Grid: "Mixed-grid" Case

Migration decision depends on:

- Network load
- Population/DC placement
- Upgrade costs

Interoperability Challenge!

UCDAVIS

10/04/20

Spectrum occupation for various bit-rates.

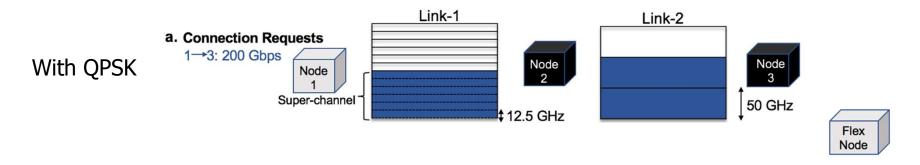
Traffic Demand (Gb/s)	Fixed-Grid		Flex-Grid	
	Bandwidth (GHz)	#Wavelengths	Bandwidth Gap (GHz)	# Slots
40	50	1	25	2
100	50	1	37.5	3
200	100	2	75	6
400	200	4	150	12

BPSK < QPSK < 8QAM < 16QAM <

32QAM

BPSK: Binary phase shift keying

QPSK: Quadrature phase shift keying


QAM: Quadrature amplitude

modulation

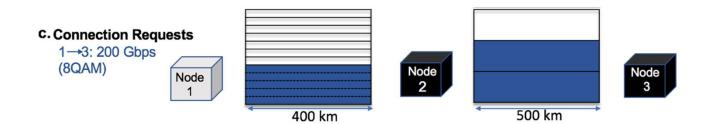
Distance and spectrum occupation in flex-grid.

distance and spectrain occupation in hex given				
Traffic Demand (Gb/s)	Modulation Format	Operating Bandwidth (GHz)	Distance (km)	#Slots
	BPSK	50	6000	4
40	QPSK	25	3000	2
	8QAM	12.5	1000	1
	BPSK	75	4500	6
	QPSK	50	3500	4
100	QPSK	37.5	3000	3
	8QAM	25	2500	2
	16QAM	18.75	1500	2
	BPSK	100	2500	8
	QPSK	75	1500	6
200	8QAM	62.5	1000	5
	16QAM	43.75	700	4
	32QAM	37.5	500	3

Spectrum occupation for various bit-rates.

Traffic	Fixed-Grid		Flex-Grid	
Demand (Gb/s)	Bandwidth (GHz)	#Wavelengths	Bandwidth Gap (GHz)	# Slots
40	50	1	25	2
100	50	1	37.5	3
200	100	2	75	6
400	200	4	150	12

Spectrum occupation for various bit-rates.


Traffic	Fixed-Grid		Flex-Grid	
Demand (Gb/s)	Bandwidth (GHz)	#Wavelengths	Bandwidth Gap (GHz)	# Slots
40	50	1	25	2
100	50	1	37.5	3
200	100	2	75	6
400	200	4	150	12

10/04/20

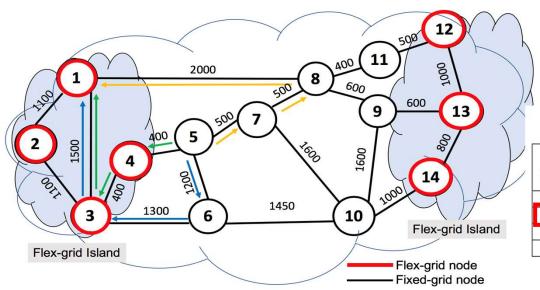
With Distance adaptive modulation format

Distance and spectrum occupation in flex-grid.

Traffic Demand (Gb/s)	Modulation Format	Operating Bandwidth (GHz)	Distance (km)	#Slots
	BPSK	50	6000	4
40	QPSK	25	3000	2
	8QAM	12.5	1000	1
	BPSK	75	4500	6
	QPSK	50	3500	4
100	QPSK	37.5	3000	3
	8QAM	25	2500	2
	16QAM	18.75	1500	2
	BPSK	100	2500	8
	OPSK	75	1500	6
200	8QAM	62.5	1000	5
	16QAM	43.75	700	4
	32QAM	37.5	500	3

Problem Statement

- Given:
 - Topology
 - Arrival rate of traffic flows
 - Set of traffic profiles
 - Set of fixed/flex-grid node locations with limited spectrum resources and constraints
- Objective:
 - In a mixed-grid scenario provision optimal routes, spectrum, and modulation format with minimum bandwidth blocking

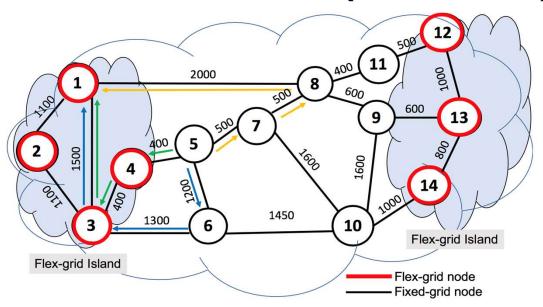


Proposed Algorithm

Algorithm 1 Spectrum Efficient Dynamic Route and Spectrum Allocation (SEDRA)

```
1: Input: N(V, E), p_{s,d}, \alpha_{s,d};
 2: Output: Route, Spectrum, and Modulation Format;
 3: for each connection request (\alpha_{s,d}) do
          P_{s,d} \leftarrow \text{find set of k-shortest paths } \alpha_{s,d};
                 ▷ list of candidate paths with available spectrum
 5:
          for each p_{s,d} in P_{s,d} do
 6:
               if (spectrum\_avail(p_{s,d}, \alpha_{s,d}) == True) then
 7:
                    \kappa_{s,d} \leftarrow \kappa_{s,d} \cup p_{s,d};
 8:
               end if
 9:
          end for
10:
          for each p_{s,d} in \kappa_{s,d} do
11:
               m \leftarrow modulation\_format(p_{s,d}, \alpha_{s,d});
12:
               \gamma_T^p \leftarrow calculate\_spectrum(p_{s,d}, \alpha_{s,d}, m);
13:
                       \triangleright find path requiring least spectrum for \alpha_{s,d}
14:
               if \gamma_T^p is lowest then
15:
                    \gamma_{min}^p \leftarrow \gamma_T^p; \\ p_{s,d}^{best} \leftarrow p_{s,d}; \\ m^{best} \leftarrow m;
16:
17:
18:
               end if
19:
          end for
20:
          Allocate lightpath on p_{s,d}^{best} using modulation format
    m^{best} to achieve minimum spectrum allocation of \gamma_{min}^p;
22: end for
```

Spectrum Efficient Dynamic Route and spectrum Allocation (SEDRA)


Spectrum occupation for various bit-rates.

Traffic	Fixed-Grid		Flex-Grid	
Demand (Gb/s)	Bandwidth (GHz)	#Wavelengths	Bandwidth Gap (GHz)	# Slots
40	50	1	25	2
100	50	1	37.5	3
200	100	2	75	6
400	200	4	150	12

- ✓ Path 1, 5-7-8-1 (3 fixed-grid & 1 flex-grid nodes): (50*3) GHz = 150 GHz
- ✓ Path 2, 5-4-3-1 (1 fixed-grid & 3 flex-grid nodes): (50 + 37.5*2) GHz = 125 GHz
- ✓ Path 3, 5-6-3-1 (2 fixed-grid & 2 flex-grid nodes): (50*2 + 37.5) GHz = 137.5 GHz

UCDAVIS

SEDRA with Distance-Adaptive Modulation Assignment (SEDRA-DA)

Distance and spectrum occupation in flex-grid.

Traffic Demand (Gb/s)	Modulation Format	Operating Bandwidth (GHz)	Distance (km)	#Slots
	BPSK	75	4500	6
	QPSK	50	3500	4
100	QPSK	37.5	3000	3
	8QAM	25	2500	2
	16QAM	18.75	1500	2

- \checkmark Non-distance adaptive approach, 5-4-3-1 (1 fixed-grid & 3 flex-grid nodes, QPSK, 3000 kms): (50 + 37.5*2) GHz = 125 GHz
- ✓ Distance adaptive (DA) approach, 5-4-3-1 (1 fixed-grid & 3 flex-grid nodes, 8QAM, 2500 kms): (50 + 25*2) GHz = 100 GHz

UCDAVIS

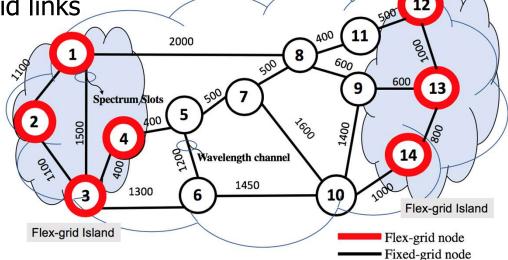
Baseline Strategies

Routing:

- Shortest Path First (SPF)
- Most Slots First (MSF)
- Largest Slot-over-Hops First (LSoHF)

Spectrum allocation:

- First Fit (FF)
- Random Fit (RF)
- Reusable Spectrum Allocation First (RSAF)

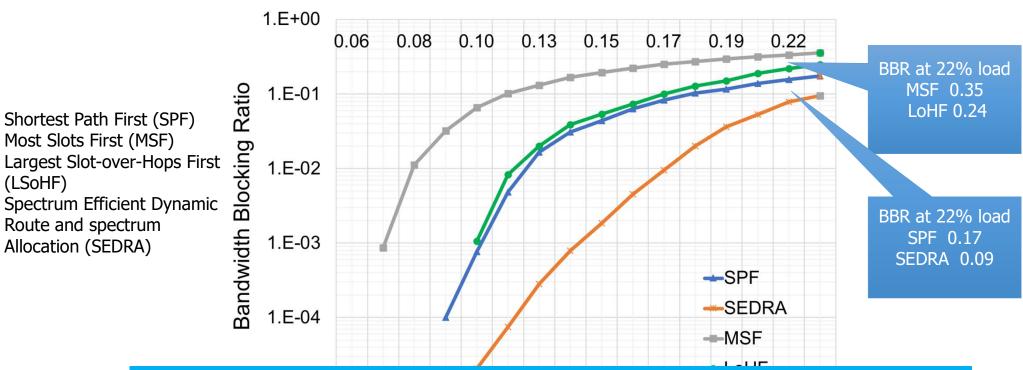

Simulation Setup

- 14 node NSFnet topology
- 7 flex-grid nodes and 7 fixed grid nodes

• 100 Wavelength channels for fixed-grid links

400 frequency slots for flex-grid links

- Poisson inter-arrival
- Exponential holding time


Performance Evaluation Metrics

$$Bandwidth \ blocking \ ratio = \frac{Rejected \ bandwidth}{Total \ requested \ bandwidth}$$

$$Spectral\ utilization\ ratio = \frac{Average\ spectrum\ occupied}{Network\ Capacity}$$

Results: BBR vs. Offered Load

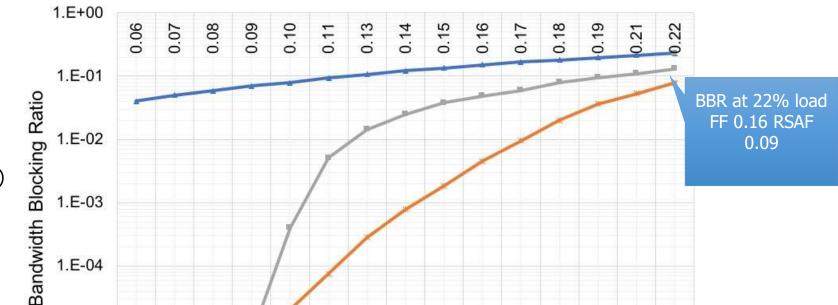
SEDRA shows around 80% less BBR compared to SPF

Normalized Offered Load

UCDAVIS

10/04/20

Shortest Path First (SPF) Most Slots First (MSF)


Route and spectrum

Allocation (SEDRA)

(LSoHF)

40

Results: BBR vs. Offered Load

Random Fit (RF)Reusable Spectrum

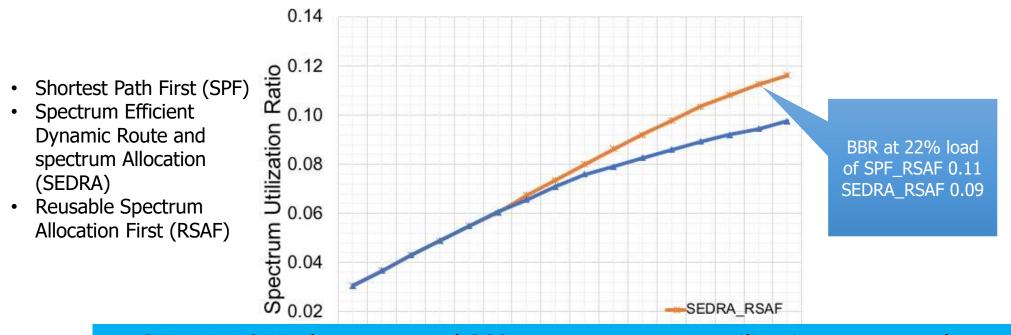
First Fit (FF)

Allocation First (RSAF)

1.E-05

SEDRA-RSAF shows around 70% less BBR compared to SEDRA-FF

Normalized Offered Load

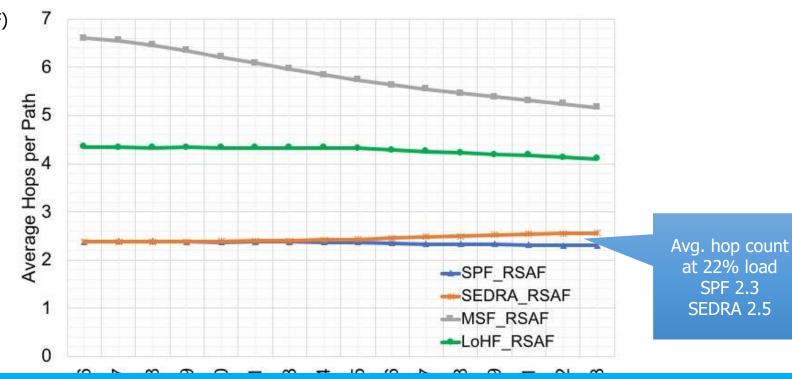

CDAVIS

10/04/20

41

SEDRA_RSAF

Results: Spectrum Utilization vs. Offered Load


SEDRA-RSAF shows around 20% more spectrum utilization compared to SPF_RSAF

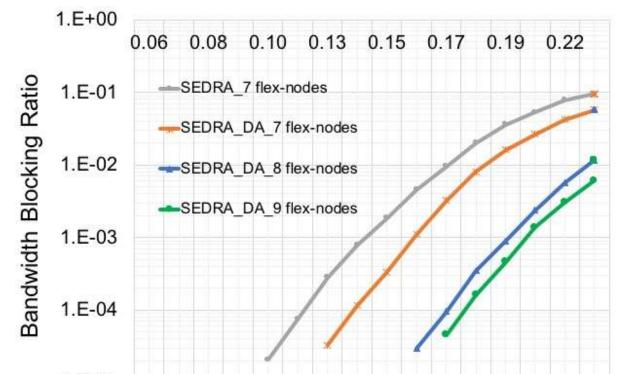
Normalized Offered Load

00000000

Results: Average Hop Count vs. Offered Load

- Shortest Path First (SPF)
- Most Slots First (MSF)
- Largest Slot-over-Hops First (LSoHF)
- Spectrum Efficient
 Dynamic Route and
 spectrum Allocation
 (SEDRA)
- Reusable Spectrum Allocation First (RSAF)

SEDRA uses around 8% more number of hops compared to SPF

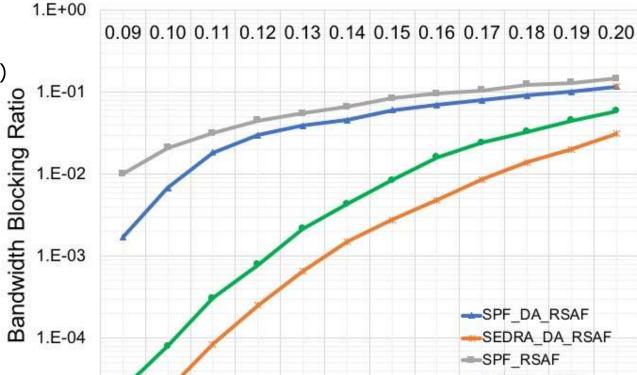

Normalized Offered Load

UCDAVIS

10/04/20

Results: BBR vs. Offered Load (varying no. of flex-grid nodes)

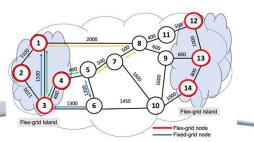
- Spectrum Efficient Dynamic Route and spectrum Allocation (SEDRA)
- Distance-adaptive modulation (DA)

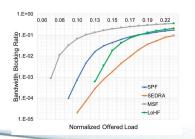

BBR decreases with increases number of flex-grid nodes

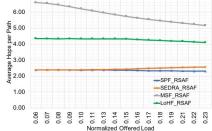
Results: BBR vs. Offered Load (Usnet-24)

- Spectrum Efficient
 Dynamic Route and
 spectrum Allocation
 (SEDRA)
- Reusable Spectrum Allocation First (RSAF)

Usnet-24 topology having more nodes and links gives lower BBR than NSFnet-14


Normalized Offered Load


Summary and Future Research Ideas


- A mixed-grid-aware spectrum-efficient solution called SEDRA is proposed for a dynamic traffic scenario
- Illustrative results show 80% BBR reduction with cost of 8% increased hop count is achieved compared to SPF for NSFnet-14 network
- 20% of spectrum utilization is obtained using SEDRA compared to SPF NSFnet network

Future work:

Applying insights gained from analysis of SEDRA to take migration decisions

Publications

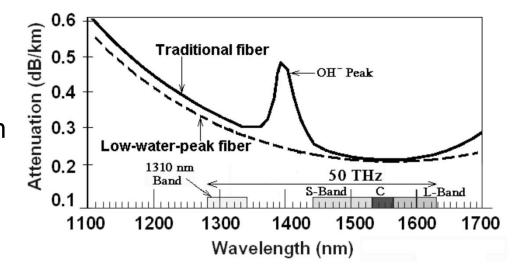
- T. Ahmed, S. Rahman, M. Tornatore, X. Yu, K. Kim and B. Mukherjee, "Dynamic Routing and Spectrum Assignment in Co-Existing Fixed/Flex-Grid Optical Networks," *Proc., Advanced Networks and Telecommunications Systems (ANTS)*, Indore, India, Dec. 2018.
- T. Ahmed, S. Rahman, S. Ferdousi, M. Tornatore, A. Mitra, B. C. Chatterjee, and B. Mukherjee, "Dynamic Routing, Spectrum, and Modulation Format Assignment in Co-Existing Mixed-Grid Optical Networks," to be submitted to *Journal of Optical Communications and Networking*.

Outline

- Introduction
- Contribution I: High-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy Solution
- Contribution II: Dynamic routing, spectrum, and modulation format assignment in co-existing fixed/flex-grid optical networks
- Conclusion and future research ideas

Outline

- ✓ Multiband optical line systems
- ✓ Spectrally—spatially flexible optical networks
- ✓ Spectrum trading in virtual optical networks

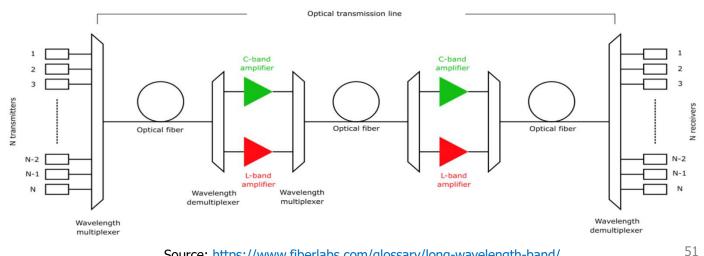


Multiband Optical Line Systems

C-band: 1530 nm to 1565 nm (Conventional) Lowest fiber loss

L-band: 1565 nm to 1625 nm

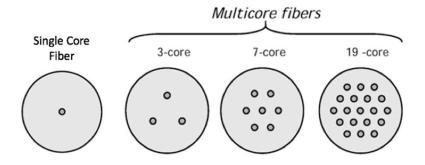
(Long Band) Low attenuation


Source: B. Mukherjee, "Optical WDM Networks," Springer Science & Business Media, 2006.

10/04/20

Challenges of Using Multiband Transmission

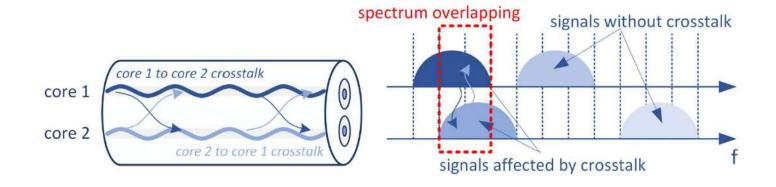
- Attenuation is higher than C band
- Quality-of-transmission estimator (QoT-E)
 - 1. Amplified spontaneous emission (ASE) noise
 - 2. Nonlinear impairments



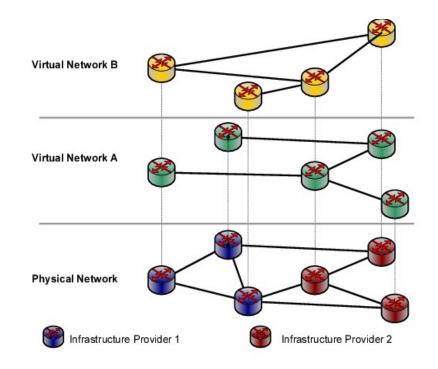
10/04/20

Source: https://www.fiberlabs.com/glossary/long-wavelength-band/

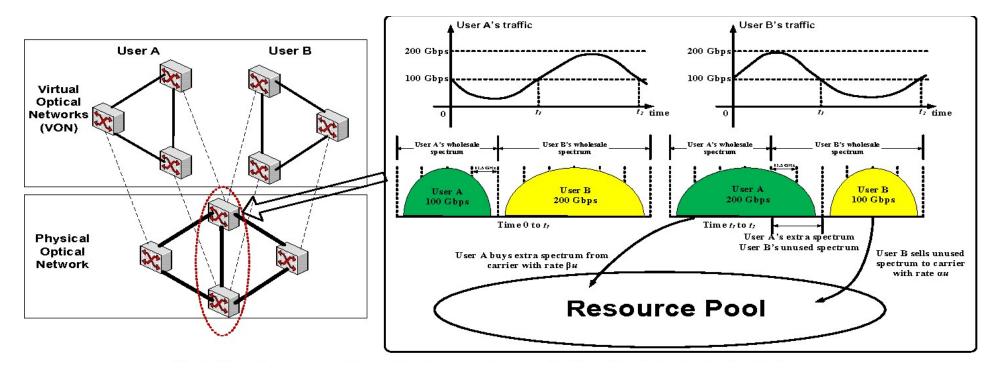
Spectrally-Spatially Flexible Optical Networks


- 1. Routing
- 2. Spectrum
- 3. Modulation format
- 4. Core

Courtesy: Andrea Marotta, Networks lab, UC Davis



Spectrally-Spatially Flexible Optical Networks

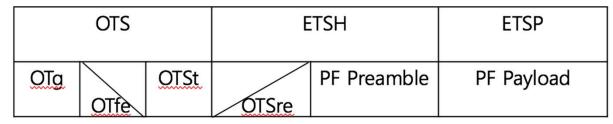

Spectrum Trading

- Network virtualization splits capacity of a physical network into multiple independent virtual optical networks (VONs)
- Allocated with fixed capacity
- Real-time capacity fluctuation
- Large idle capacity & capacity shortage is observed on virtual links

Spectrum Trading

Conclusion

- Importance of flexible network architecture
- Ultra low latency (sub-microsecond) is achievable in a distributed system like a datacenter using data plane transmission and PTP time synchronization protocol
- A mixed-grid-aware resource provisioning technique can obtain high spectrum efficiency by allocating lightpaths considering all the interoperability challenges



Appendix

Photonic Frame

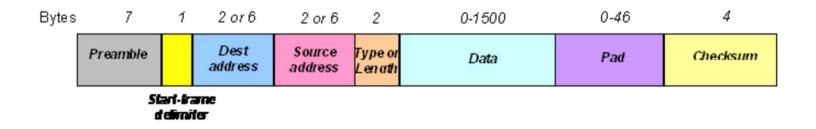
OTS: Optical Time Slot

ETS: Electrical Time Slot OTfe: Optical Falling Edge time

ETSH: ETS Header

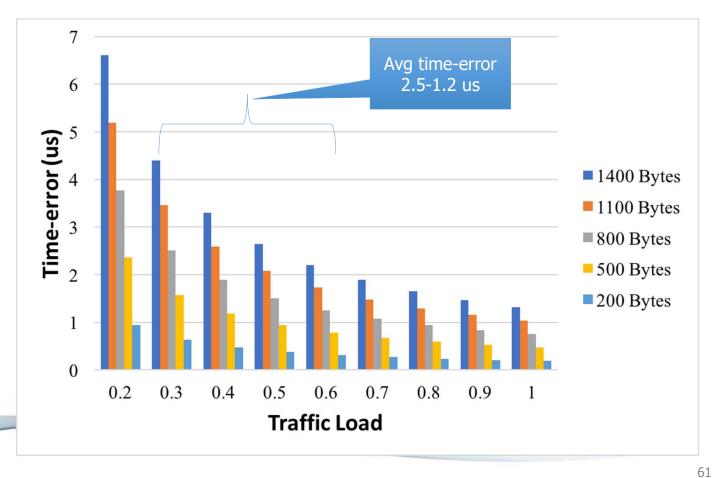
ETSP: ETS Payload

PF: Photonic Frame

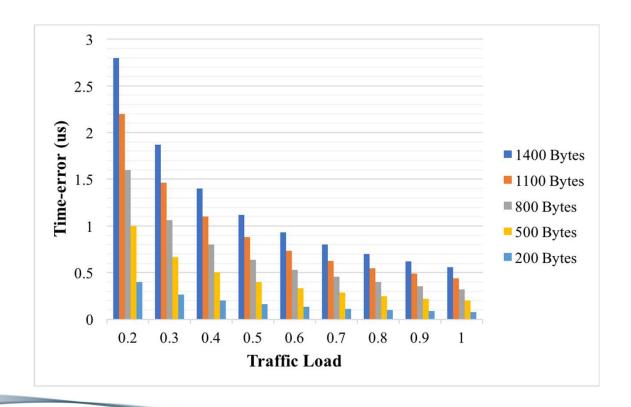

OTg: Optical guard time

OTSt: Optical wavelength Switching Time

OTSre: Optical Rising Edge time


Ethernet Frame

Source: http://www.dcs.gla.ac.uk/~lewis/networkpages/m04s03EthernetFrame.htm



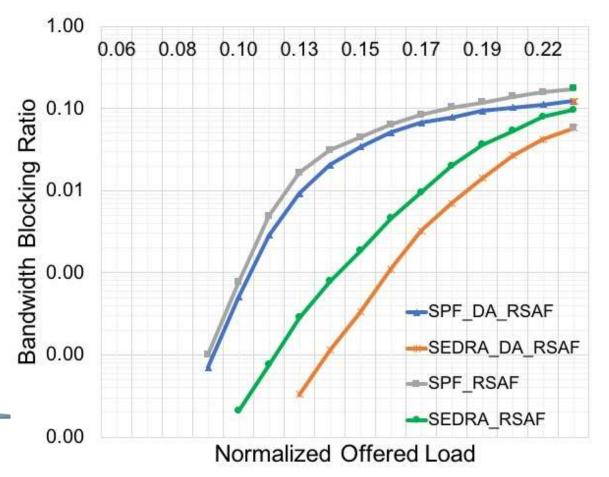
Results: Time-error vs. Load (Pareto)

Results: Time-error vs. Load (Uniform)

Performance Evaluation Metrics

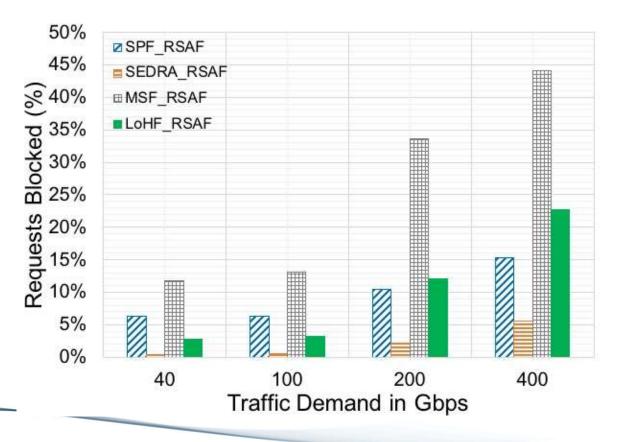
Offered load

= arrival rate * avg request size * avg holding time* Avg path length/Network Capacity

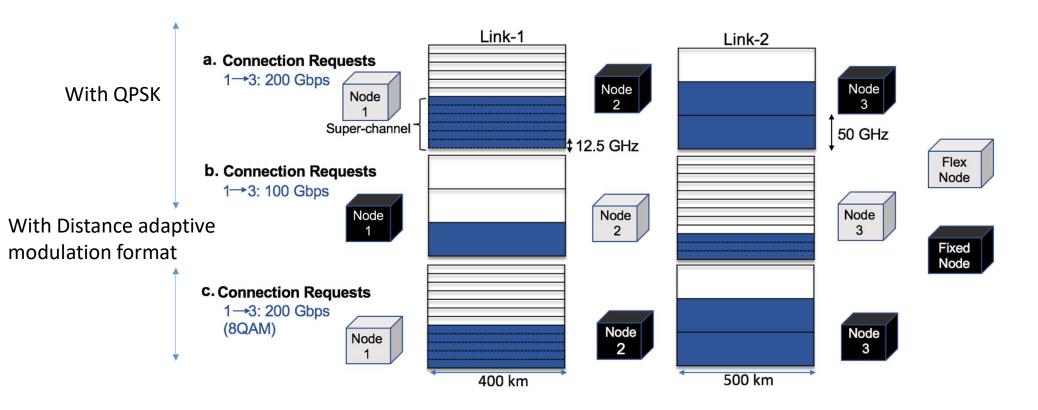

Network Capacity

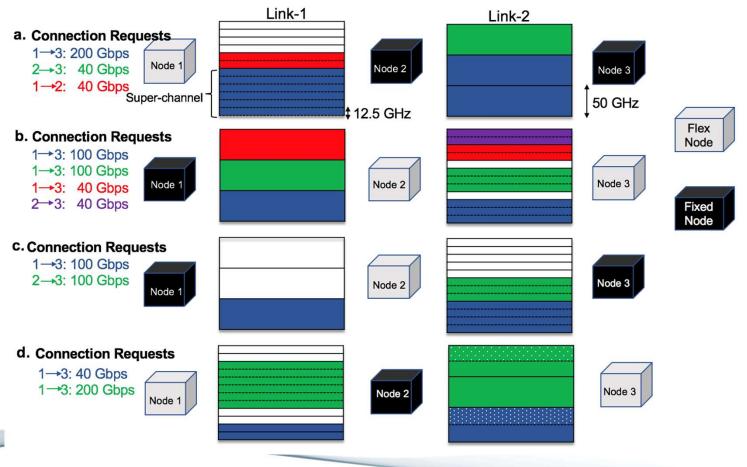
= #fixed links * channel capacity in GHz * Spectral Efficiency of fixed grid + #flex link * channel capacity in GHz * Spectral Efficiency of flex-grid

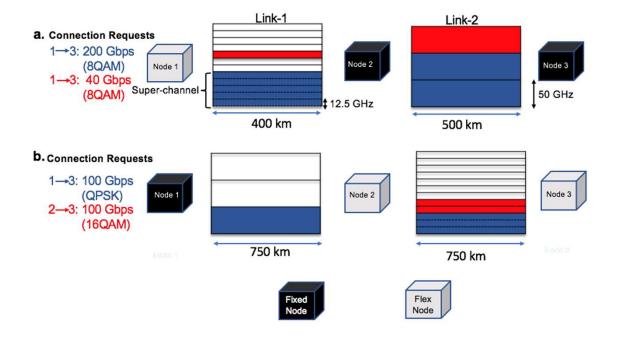
Spectral Efficiency of fixed grid = 100/50 = 2 bits/sec/Hz Spectral Efficiency of fixed grid = 100/37.5 = 2.6 bits/sec/Hz



Results: BBR vs. Offered load

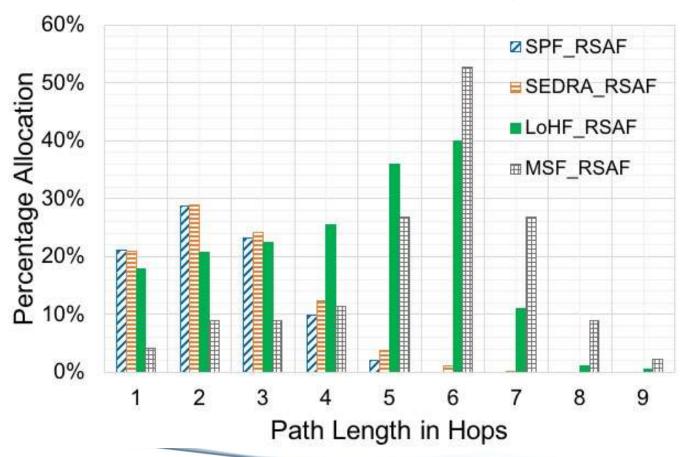



Results: Request Blocked vs. Traffic Demand


10/04/20

UCDAVIS

10/04/20



10/04/20

Traffic Profiles

Traffic Profiles

Traffic Demand (Gb/s)	Profile 1	Profile 2	Profile 3
40	50%	20%	0%
100	30%	50%	40%
200	15%	20%	40%
400	5%	10%	20%

10/04/20

Algorithm 1 Spectrum Efficient Dynamic Route and Spectrum Allocation (SEDRA)

```
1: Input: N(V, E), p_{s,d}, \alpha_{s,d};
 2: Output: Route, Spectrum, and Modulation Format;
 3: for each connection request (\alpha_{s,d}) do
          P_{s,d} \leftarrow \text{find set of k-shortest paths } \alpha_{s,d};
                 ⊳ list of candidate paths with available spectrum
 5:
          for each p_{s,d} in P_{s,d} do
 6:
               if (spectrum\_avail(p_{s,d}, \alpha_{s,d}) == True) then
 7:

\kappa_{s,d} \leftarrow \kappa_{s,d} \cup p_{s,d};

 8:
               end if
 9:
          end for
10:
          for each p_{s,d} in \kappa_{s,d} do
11:
               m \leftarrow modulation\_format(p_{s,d}, \alpha_{s,d});
12:
               \gamma_T^p \leftarrow calculate\_spectrum(p_{s,d}, \alpha_{s,d}, m);
13:
                       \triangleright find path requiring least spectrum for \alpha_{s,d}
14:
               if \gamma_T^p is lowest then
15:

\gamma_{min}^{p} \leftarrow \gamma_{T}^{p}; 

p_{s,d}^{best} \leftarrow p_{s,d}; 

m^{best} \leftarrow m;

16:
17:
18:
19:
               end if
          end for
20:
          Allocate lightpath on p_{s,d}^{best} using modulation format
    m^{best} to achieve minimum spectrum allocation of \gamma_{min}^p;
22: end for
```

Algorithm 2 spectrum_avail()

```
1: Input: p_{s,d}, \alpha_{s,d};
2: Output: Boolean, spectrum available or not;
3: m \leftarrow modulation\_format(p_{s,d}, \alpha_{s,d});
4: for each link l in p_{s,d} do
5: \gamma_l^p \leftarrow mixed\_grid\_spectrum(s, l_s, l_e, \alpha_{s,d}, m);
6: Requested no. of slots, n \leftarrow \gamma_l^p / W_{fl};
7: \rhd find n contiguous slots on link l
8: if \psi_l^n == false then
9: return false;
10: end if
11: end for
12: return true;
```

Algorithm 3 mixed_grid_spectrum()

```
1: Input: s, l_s, l_e, \alpha_{s,d}, m;
 2: Output: \gamma_l^p;
 3: if \phi_s == 0 then
        if \phi_{l_s} == 0 then
             calculate\_spectrum(0, \alpha_{s,d}, m)
 5:
                               6:
        else if (\phi_{l_s} == 1 \& \phi_{l_e} == 0) then
 7:
             calculate\_spectrum(0, \alpha_{s,d}, m);
 8:
        else if (\phi_{l_s} == 1 \& \phi_{l_e} == 1) then
 9:
             calculate\_spectrum(1, \alpha_{s,d}, m);
10:
        end if
11:
12: else
        if \phi_{l_a} == 1 then
13:
             calculate\_spectrum(1, \alpha_{s,d}, m);
14:
        else if (\phi_{l_s} == 0 \& \phi_{l_e} == 1) then
15:
             calculate\_spectrum(0, \alpha_{s,d}, m);
16:
        else if (\phi_{l_s} == 0 \& \phi_{l_e} == 0) then
17:
18:
             calculate\_spectrum(0, \alpha_{s,d}, m);
        end if
19:
20: end if
21: return \gamma_i^p;
```

Algorithm 4 calculate_spectrum()

- 1: Input: $\phi_v, \alpha_{s,d}, m$;
- 2: Output: γ_T^p ;
- 3: $\gamma_T^p \leftarrow 0$;
- 4: for each link l in $p_{s,d}$ do
- 5: $\gamma_l^p \leftarrow$ find minimum required spectrum for $\alpha_{s,d}$ and modulation format m from Table I and II;
- 6: $\gamma_T^p \leftarrow \gamma_T^p + \gamma_l^p$;
- 7: end for
- 8: return γ_T^p ;

Algorithm 5 modulation_format()

- 1: Input: $p_{s,d}, \alpha_{s,d}$;
- 2: Output: m;
- 3: $p^l \leftarrow$ find path-length of path $p_{s,d}$;
- 4: $p^{fixed} \leftarrow \text{find if } p_{s,d} \text{ has all fixed-grid nodes};$
- 5: **if** $p_{fixed} == True$ **then**
- 6: return QPSK;
- 7: else
- 8: return highest modulation format with reach p^l for $\alpha_{s,d}$ using II;
- 9: end if

