Optical Networking: What Is Its Future?

IEEE Infocom ’03 Panel

Panelists:
Chris Rust, CEO, Mahi Networks
Rajiv Ramaswami, CTO, Optical Networking, Cisco
Hui Zang, Sprint Advanced Technology Lab.
Young-Chon Kim, Chonbuk Natl. Univ., Korea
Biswanath Mukherjee, UC Davis (Moderator)

April 2, 2003
What Is An Optical Network?

• It is **NOT NECESSARILY** all optical

 " " " " " " packet switched

• **Characteristics of an optical network**

 – **Transmission**: optical
 – **Switching**: could be optical, could be electronic, could be hybrid

 could be circuit, could be packet, could be burst

• **Most Promising Approach Today**

 – Electronic circuit switching with sub-lambda granularity (STS-1, OC-3, …)

• **Example Utility for IP Networking**

 – Connect any two IP routers (geographically far apart) with a direct

 ("virtual") bandwidth pipe… of whatever capacity (STS-1, … OC-192)
 – Increase (or decrease or delete) the capacity on demand
 – Dynamically control the “topology” connecting the IP routers
 – Create a “separated control network” (of whatever bandwidth)
 – …
An Example Network

Network Management System (NMS)

IP Router

ADM

UNI

Proprietary NNI

Standardized NNI
System/Network : Value Proposition

Current state of the art

Optical Science & Engineering

Electronic (Computer) Engineering

Software Engineering

“My” system + Yours too (?)

System A

My system

Yours too (?)

System VALUE
Optical Network Architecture:
Extending Our “Boundaries”

Applications

Network Architect

Physical Layer

(“Customer” needs)

Differentiated Services:
Bandwidth: OC-192, OC-48, ..., STS-1, VT1.5, ...
Failure-Recovery Delay: The “50-ms myth!”
Network Economics: Pricing, SLA, ...

(you and I)

+ routing protocols to combat optical channel impairments
+ breakthroughs needed in device technologies?
 - optical RAM, ultra-wideband amp, “tunable” AWG, ...

(optical comm. channel) -- materials, devices, subsystems
Emerging Business Paradigms

• “Wave Services”
 – “transparent” lambdas: run whatever you like
 (OC-48, OC-192, OC-768, GigE, 10GigE, …)

• Carrier-Neutral Internet-Exchange Points
 – “Carrier Hotels”

• Fast Bandwidth Provisioning
 – With a variety of user-configurable features
 – GMPLS for control plane?

• Bandwidth Brokers
 – Sell sub-lambda services as well (e.g., STS-1, OC-3, …)
Some Thoughts…

- Optical networking:
 - Three “pillars” for optical network architecture
 - Optics, electronics, software
 - All-optical networking
 - (When) will it happen?
 - Is it needed?
 - Circuit vs. packet vs. “burst”
 - Dynamic bandwidth management
 - Access vs. metro vs. long haul
 - Optical access: free-space optics
 - What revolutions/breakthroughs are needed in device technologies?
 - Optical RAM, ultra-wideband amplifier, “tunable” AWG, …
R&D Priorities

- **Access:** EPON architectures, Free-space optics
- **Metro:** ROADM-based architectures
- **Long-Haul:**
 - * Provisioning Connections of Different Bandwidth Granularities
 - Hierarchical Optical Switch (Crossconnect) Architectures
 - Traffic Grooming in WDM Mesh Networks
 - * Fault Monitoring and Restoration
 - Provisioning with Guaranteed SLA
 - “X-ms” guaranteed protection-switching time
 - * Dynamic Network Planning, Topology Engineering
 - Network Architectures and Algorithms to Combat Optical Signal-Quality Impairments
 - Optical Multicasting and “Light-Trees”
 - Optical Packet Switching (OPS) and Optical Burst Switching (OBS)