Network Design and Planning (sq16)

Analysis of offered, carried and lost traffic in circuit-switched systems

Massimo Tornatore
Dept. of Electronics, Information and Bioengineering
Politecnico di Milano

Dept. Computer Science
University of California, Davis
tornator@elet.polimi.it
Summary

- General considerations
- Statistical traffic characterization
- Analysis of server groups
- Dimensioning server groups
Summary

- General considerations
 - Definitions
 - Parameters
- Traffic characterization
- Analysis of server groups
- Dimensioning server groups
Network

Basic concepts

- We are dealing with circuit-switched networks with given resources/capacity
- System that we analyse

![Diagram](image)

offered traffic/
users/sources

servers
Network

Basic concepts

- 3+(1) fundamental parameters
 - \(A \): offered load
 - \(m \): Service system with certain capacity
 - \(P \): quality of service (e.g. delay or blocking probability)
 - \(F \): functional characteristics (e.g. queueing discipline, routing technique, etc.)

- Problems
 - Dimensioning (synthesis, network planning)
 - Given \(A \), \(P \) (and \(F \)), find \(m \) at minimum cost/capacity
 - Performance evaluation (analysis)
 - Given \(A \), \(m \) (and \(F \)), find \(P \)
 - Management (traffic engineering)
 - Given \(A \) and \(m \), find \(F \) optimizing \(P \)
For each model a statistical characterization needed for
 - Traffic sources
 - Server systems

```
Traffic
sources
```

```
Service
system
```
Sources
- S traffic sources
 - Generate connection requests (calls)
- Busy source: source engaged in a service request
 - Otherwise the user is not busy or free
- Average number of busy sources = Average amount of offered traffic

Servers
- m system servers
 - Satisfy requests issued by sources
- Busy server: server engaged in a service to a source for a time duration requested by the source (holding time of the connection)
- Average number of busy servers = Average amount of carried traffic

Congestion: a connection request is not accepted \Rightarrow Blocked request
- Denied request (loss systems)
- Delayed request (waiting systems)
Network

Basic concepts

- **E[θ]**: average holding time of a connection

- **Offered traffic**
 - \(\Lambda_o \): average rate of connection requests
 - \(A_o \): average number of connection requests issued in a time interval equal to the average holding time
 \[A_o = \Lambda_o E[\theta] = \Lambda_o / \mu \]

- **Carried traffic**
 - \(\Lambda_s \): average acceptance rate of connection requests (statistical equilibrium)
 - \(A_s \): average number of connection requests accepted in a time interval equal to the average holding time
 \[A_s = \Lambda_s E[\theta] = \Lambda_s / \mu \]

- **Lost traffic**
 - \(\Lambda_p \): average refusal rate of connection requests
 - \(A_p \): average number of connection requests denied in a time interval equal to the average holding time
 \[A_p = \Lambda_p E[\theta] = \Lambda_p / \mu \]

- \(A_o, A_s, A_p \) adimensional \(\Rightarrow \) Erlang
How do we use queueing theory for traffic characterization?

- If $L=0$, and $m \to \infty$, then $A_o = A_s$
- This is the assumption we use for traffic characterization
Summary

- General considerations
- Traffic characterization
 - Statistical behaviour
 - Modeling of offered traffic
- Analysis of server groups
- Dimensioning server groups
Traffic theory

Traffic description

Statistical behaviour

- Relevant time instants
 - Time of service request
 - Time of service completion

- \(X(t, \omega) = \text{Number of servers busy at time } t \text{ of realization } \omega \text{ of the process} \)

- Assumptions
 - Stationarity
 - \(E_{[t_0,t_0+\tau]}[X(t, \omega)] = A_t(t_0, \omega) = A_t(\omega) = A(\omega) \)
 - Ergodicity
 - \(A(\omega) = A \)
Traffic theory

Traffic description

- Two main parameters
 - Holding time θ (duration of the call/request)
 - It is the inverse of the service rate: $E(\theta)=1/\mu$
 - We will stick to the traditional assumption of negative exponential distribution of the holding time
 - Simple and practical
 - Interarrival time T (time between the arrival of two calls)
 - It is the inverse of the arrival rate $E(T)=1/\lambda$
 - We will consider the traditional assumption (Poisson), as well as two other cases (Bernoulli and Pascal)
- Possible histogram of holding times and corresponding approximation though exponential distribution

\[\Pr\{\theta > t\} = e^{-\frac{t}{\theta}} \]
As for the interarrival time we will see three distributions:
- Pascal, Bernoulli, Poisson

Why are they interesting?
- See next slides
Traffic characterization

Poisson

- Parameters
 - $A_o = \Lambda_o = 30$
 - $m = 50$
Traffic characterization

Bernoulli

- Parameters
 - $A_o = 30$
 - $m = 50$
 - $S = 40$
Traffic characterization

Pascal

- Parameters
 - $A_o = 30$
 - $m = 50$
 - $c = 10$
Traffic theory

Traffic description

How do we model the three previous traffic behaviors?

- We use a birth & death process \([X(t)]\) to represent the offered traffic
 - Births: arrivals of service requests
 - Deaths: service completions
- In general b&d processes are characterized by two parameters
 - \(E[X(t)]\)
 - \(Var[X(t)]\) or \(VMR = \frac{Var[X(t)]}{E[X(t)]}\) (peakedness factor)
- Same characterization for all traffic types (offered, carried, lost)
- Typically, modelling simplicity suggests
 - Deaths: exponential - \(Pr[\theta > t] = e^{-t/\theta} = e^{-\mu t}\)
 - Births: Poisson - \(Pr[X(t) = k] = \frac{\lambda^k}{k!} e^{-\lambda t}\)
- In this lecture we go beyond Poisson (VMR = 1) and we also consider
 - Smoothed traffic (VMR < 1) - Bernoulli
 - Peaked traffic (VMR >1) - Pascal
Offered traffic model
Assumptions

- Arrival and service processes
 - Independent identically distributed (IID) interarrival times
 - IID service times
 - Arrival and service process mutually independent
 - Ergodicity
 - Stationarity
Offered traffic model

Single source

- **Source model**
 - Two states: idle (0) or busy (1)
 - \(\Pr\{0 \rightarrow 1 \text{ in } (t, t + \Delta t) | 0\} = \lambda' \Delta t \)
 - \(\Pr\{1 \rightarrow 0 \text{ in } (t, t + \Delta t) | 1\} = \mu \Delta t \)
 - \(\Rightarrow \) interarrival and service times with exponential distribution and
 - \(\lambda' \) = conditioned average interarrival rate (idle source)
 - \(\mu \) = conditioned average rate of service completion (busy source)
 - **Steady-state limiting probabilities**
 - \(q_0 = \frac{\mu}{\lambda' + \mu} \quad q_1 = \frac{\lambda'}{\lambda' + \mu} = A_o \)
 - \(1 = \frac{1}{\lambda} = \frac{1}{\mu} + \frac{1}{\lambda'} \rightarrow \lambda = A_o \mu = \frac{\lambda' \mu}{\lambda' + \mu} \)
 - individual average interarrival rate
 - \(a = \frac{\lambda}{\mu} = q_1 = \frac{\lambda'}{\lambda' + \mu} = \frac{\alpha}{1 + \alpha} \)
 - offered traffic by a source
 - \(\alpha = \frac{\lambda'}{\mu} = \frac{q_1}{1 - q_1} = \frac{\lambda}{\mu - \lambda} = \frac{a}{1 - a} \)
 - offered traffic by an idle source
Offered traffic model

Multiple sources

- Single source model ensures that the occupancy process of a source groups is
 - markovian
 - continuous-time and time-homogeneous with discrete states
 - of birth & death type
- In formulas, this mean that the transition probabilities can be written as
 \[\Pr\{0 \rightarrow 1 \text{ for a source in } (t, t + \Delta t) | n \text{ busy sources}, 0\} = \lambda'_n \Delta t \]
 \[\Pr\{1 \rightarrow 0 \text{ for a source in } (t, t + \Delta t) | n \text{ busy sources}, 1\} = \mu_n \Delta t \]
- IID service times (also called source occupancy times) \(\Rightarrow \) \(\mu_n = n \mu \)
- Interbirth times described by three models
 - Bernoulli \(\lambda'_n = \lambda'(S - n) \) [S sources]
 - Poisson \(\lambda'_n = \Lambda_\infty = \lambda \) [\(\infty \) sources]
 - Pascal \(\lambda'_n = \lambda'(c + n) \) [\(\infty \) sources] [c integer]
Offered traffic model

Steady state characterization

- State probabilities in steady-state conditions derived by queues $M/M/\infty$
 - $X =$ Number of sources busy at the same time
 - $A_o = A_s = E[X] = \frac{\Lambda_o}{\mu}$

Bernoulli
$$p_n = \binom{S}{n} a^n (1-a)^{S-n}$$
$$n = 0, \ldots, S$$
$$a = p_1 = \frac{\lambda}{\mu} = \frac{\lambda'}{\lambda' + \mu}$$

Poisson
$$p_n = \frac{a^n}{n!} e^{-a}$$
$$a = \frac{\lambda}{\mu}$$

Pascal
$$p_n = \binom{c+n-1}{n} \alpha^n (1-\alpha)^c$$
$$\alpha = \frac{\lambda'}{\mu}$$
Offered traffic model

Steady state characterization

- State probabilities in steady-state conditions derived by queues M/M/∞
 - \(X = \text{Number of sources busy at the same time} \)
 - \(A_o = A_s = E[X] = \frac{\Lambda_o}{\mu} \)

<table>
<thead>
<tr>
<th>Bernoulli</th>
<th>Poisson</th>
<th>Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_n)</td>
<td>(\lambda' (S - n))</td>
<td>(\lambda' (c + n))</td>
</tr>
<tr>
<td>(\mu_n)</td>
<td>(n \mu)</td>
<td>(n \mu)</td>
</tr>
<tr>
<td>(\tilde{X} = A_o)</td>
<td>(Sa)</td>
<td>(\frac{c \alpha}{1 - \alpha})</td>
</tr>
<tr>
<td>(\sigma_X^2 = \sigma_o^2)</td>
<td>(Sa (1 - a))</td>
<td>(\frac{c \alpha}{1 - \alpha})</td>
</tr>
<tr>
<td>RVM</td>
<td>(1 - a)</td>
<td>(\frac{1}{1 - \alpha})</td>
</tr>
</tbody>
</table>

\[
\lambda_n = \Lambda_o + \lambda' (\tilde{X} - n) \\
\lambda_n = \Lambda_o + \lambda' (n - \tilde{X})
\]
Offered traffic model

Steady state characterization

- Traffic source models
 - Random traffic Poisson
 - Smoothed traffic Bernoulli
 - Peaked traffic Pascal

- Limiting cases
 - Bernoulli → Poisson with \(A_o = S \alpha \) if \(S \rightarrow \infty \) and \(\lambda' \rightarrow 0 \)
 - Pascal → Poisson with \(A_o = \frac{c \alpha}{1 - \alpha} \) if \(c \rightarrow \infty \) and \(\lambda' \rightarrow 0 \)

- Given \(E[X] \) and \(\text{Var}[X] \) one of the three traffic models is adopted with parameters

<table>
<thead>
<tr>
<th>Bernoulli</th>
<th>Poisson</th>
<th>Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S = \frac{A_o^2}{A_o - \sigma_X^2} = \frac{A_o}{1 - \text{RVM}})</td>
<td>(A_o = \bar{X} = \sigma_X^2)</td>
<td>(c = \frac{A_o^2}{\sigma_X^2 - A_o} = \frac{A_o}{\text{RVM} - 1})</td>
</tr>
<tr>
<td>(a = 1 - \frac{\sigma_X^2}{A_o} = 1 - \text{RVM})</td>
<td></td>
<td>(\alpha = 1 - \frac{A_o}{\sigma_X^2} = 1 - \frac{1}{\text{RVM}})</td>
</tr>
</tbody>
</table>
Based on the previous 3 models for traffic sources, we can analyze the behaviour of the service system according to three main cases:

Behaviour of a source requesting service to a blocked system:

- Blocked calls **cleared** – BCC (chiamate perdute sparite - CPS) (loss system)
 - Source gives up

- Blocked calls **held** – BCH (chiamate perdute tenute - CPT)
 - Source keeps asking for service for a time T_q; $\theta_{\text{eff}} = \theta - T_q$

- Blocked calls **delayed** – BCD (chiamate perdute ritardate - CPR) (delay systems)
 - Sources keeps asking for service indefinitely
Summary

- General considerations
- Traffic characterization
- Analysis of server groups
 - Behavior upon congestion
 - Grade of service
- Dimensioning server groups
System with m servers

- X: number of busy sources
- n: number of users in the system

CPS (BCC) ⇒ pure loss queue - M/M/m/0

- Time congestion: $S_p = \Pr\{\text{blocked system}\}$
- Call congestion: $\Pi_p = \Pr\{\text{blocked system} \mid 1 \text{ arrival}\}$

\[
S_p = \Pr\{X = m\} = \Pr\{n = m\}
\]

\[
\Pi_p = \Pr\{X = m \mid 1 \text{ arrival}\} = \frac{\Pr\{n = m \cap 1 \text{ arrival}\}}{\Pr\{1 \text{ arrival}\}}
\]

\[
= \frac{\Pr\{1 \text{ arrival} \mid n = m\} \Pr\{n = m\}}{\Pr\{1 \text{ arrival}\}} = S_p \frac{\Pr\{1 \text{ arrival} \mid n = m\}}{\Pr\{1 \text{ arrival}\}}
\]

- Poisson case: $\Pr\{1 \text{ arrival} \mid n = m\} = \Pr\{1 \text{ arrival}\} \Rightarrow S_p = \Pi_p$
Analysis of server group

Behaviour upon congestion - CPT

- System with \(m \) servers
 - \(X \): number of busy sources
 - \(n \): number of users in the system

- CPT (BCH) \(\Rightarrow \) queue with infinite servers of which \(m \) are true, the other fictitious – M/M/\(\infty \)
 - Source receives either true service (\(X < m \)) for the requested time or fictitious service (\(X = m \)) for a time \(T_q \)
 - Server becoming idle in state \(X = m \) makes effective a fictitious service for a residual time \(\theta_{\text{eff}} = \theta - T_q \)
 - Time congestion: \(S_t = \Pr\{\text{busy true servers}\} \)
 - Call congestion: \(\Pi_t = \Pr\{\text{busy true servers} | 1 \text{ arrival}\} \)
 \[
 S_t = \Pr\{X = m\} = \Pr\{n \geq m\} \\
 \Pi_t = \Pr\{X = m | 1\text{arr}\} = \Pr\{n \geq m | 1\text{arr}\} = \frac{\Pr\{n \geq m \cap 1\text{arr}\}}{\Pr\{1\text{arr}\}} \\
 \text{Poisson case: } \Pr\{1 \text{ arrival} | n = m\} = \Pr\{1 \text{ arrival}\} \Rightarrow S_t = \Pi_t
 \]
Analysis of server group

Behaviour upon congestion - CPR

- System with m servers
 - X: number of busy sources
 - n: number of users in the system

- CPR (BCD) \Rightarrow pure delay system - M/M/m
 - Time congestion: $S_r = \Pr\{\text{blocked service}\}$
 - Call congestion: $\Pi_r = \Pr\{\text{blocked service} \mid 1 \text{ arrival}\}$
 \[
 S_r = \Pr\{X = m\} = \Pr\{n \geq m\}
 \]
 \[
 \Pi_r = \Pr\{X = m \mid 1 \text{ arrival}\} = \frac{\Pr\{n \geq m \cap 1 \text{ arrival}\}}{\Pr\{1 \text{ arrival}\}}
 \]
 - Poisson case: $\Pr\{1 \text{ arrival} \mid n = m\} = \Pr\{1 \text{ arrival}\} \Rightarrow S_r = \Pi_r$
Analysis of server group

BCC (CPS) - \(m = \infty \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distr.</td>
<td>Bernoulli</td>
</tr>
<tr>
<td>Policy</td>
<td>CPS</td>
</tr>
<tr>
<td>Sim time</td>
<td>100</td>
</tr>
<tr>
<td>(m)</td>
<td>15</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.1</td>
</tr>
<tr>
<td>(s)</td>
<td>13</td>
</tr>
<tr>
<td>(A_0)</td>
<td>11.1429</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>1.59184</td>
</tr>
<tr>
<td>RVM</td>
<td>0.142857</td>
</tr>
</tbody>
</table>
Analysis of server group

BCC (CPS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distr.</td>
<td>Bernoulli</td>
</tr>
<tr>
<td>Policy</td>
<td>CPS</td>
</tr>
<tr>
<td>Sim time</td>
<td>100</td>
</tr>
<tr>
<td>m</td>
<td>10</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>13</td>
</tr>
<tr>
<td>(A_0)</td>
<td>11.1429</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>1.59184</td>
</tr>
<tr>
<td>RVM</td>
<td>0.142857</td>
</tr>
</tbody>
</table>
Analysis of server group

BCH (CPT)

Parameter	Value
Distr. | Bernoulli
Policy | CPT
Sim time | 100
m | 10
\(\lambda \) | 0.5
\(\mu \) | 0.1
S | 13
\(A_0 \) | 11.1429
\(\sigma^2 \) | 1.59184
RVM | 0.142857

Traffic theory
Analysis of server group

BCD (CPR)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distr.</td>
<td>Bernoulli</td>
</tr>
<tr>
<td>Policy</td>
<td>CPR</td>
</tr>
<tr>
<td>Sim time</td>
<td>100</td>
</tr>
<tr>
<td>m</td>
<td>10</td>
</tr>
<tr>
<td>λ</td>
<td>0.5</td>
</tr>
<tr>
<td>μ</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>13</td>
</tr>
<tr>
<td>Ao</td>
<td>11.1429</td>
</tr>
<tr>
<td>σ²</td>
<td>1.59184</td>
</tr>
<tr>
<td>RVM</td>
<td>0.142857</td>
</tr>
</tbody>
</table>
In the next slides, the formulas for S and Π are reported for BCC, BCH and (partially) BCD.

Only a subset of the proofs is requested (according to what is covered during the lecture):

- No need to know the other formulas, we will only check the performance comparison on graphs.
- It is important to be able to interpret the two graphs.
- Note the observation about Molina’s formula.
Analysis of server group

BCC (CPS) - Bernoulli

\[
\lambda_n = \lambda'(S - n) \quad (n = 0, \ldots, m)
\]

\[
\mu_n = n\mu \quad (n = 1, \ldots, m)
\]

\[
p_n = \frac{\binom{S}{n}\alpha^n}{\sum_{j=0}^{m} \binom{S}{j}\alpha^j} \quad (n = 0, \ldots, m)
\]

\[
\alpha = \frac{\lambda'}{\mu} = \frac{a}{1-a(1-\Pi_p)} = \frac{\alpha}{1+\alpha\Pi_p} \quad (\text{free source}) ;
\]

\[
a = \frac{\lambda}{\mu} = \frac{\alpha}{1+\alpha(1-\Pi_p)} \quad (\text{source})
\]

\[
S_p = p_m
\]

\[
\Pi_p = S_p \frac{\lambda'(S - m)}{\Lambda_o} = \frac{\binom{S-1}{m}\alpha^m}{\sum_{j=0}^{m} \binom{S-1}{j}\alpha^j}
\]

\[
\Rightarrow \Pi_p(S, m, \hat{\alpha}) = S_p(S - 1, m, \hat{\alpha}) \quad (\text{Engset})
\]
Analysis of server group

BCC (CPS) - Bernoulli

\[
A_o = Sa \quad A_o = \frac{\Lambda_o}{\mu} = \frac{\sum_{j=0}^{m} \lambda_j p_j}{\mu} = \hat{\lambda}(S - \bar{n}) = \hat{\alpha}(S - A_s) = S\hat{\alpha} \quad \frac{\sum_{k=0}^{m} \binom{S-1}{k} \hat{\alpha}^k}{\sum_{j=0}^{m} \binom{S}{j} \hat{\alpha}^j}
\]

\[
A_s = A_o \left(1 - \Pi_p\right) = Sa \left(1 - \Pi_p\right) = \sum_{k=0}^{m} kp_k = S\hat{\alpha} \quad \frac{\sum_{k=0}^{m-1} \binom{S-1}{k} \hat{\alpha}^k}{\sum_{j=0}^{m} \binom{S}{j} \hat{\alpha}^j}
\]

\[
A_p = A_o - A_s = A_o \Pi_p
\]

\[
\sigma_s^2 = \sum_{k=0}^{m} (k - A_s)^2 p_k = A_s(S, m, \hat{\alpha}) \left[1 - \left[A_s(S, m, \hat{\alpha}) - A_s(S - 1, m - 1, \hat{\alpha})\right]\right]
\]

\[
\sigma_s^2 = Sa \left(1 - \Pi_p(S, m, \hat{\alpha})\right) \left[1 - \left[A_s(S, m, \hat{\alpha}) - A_s(S - 1, m - 1, \hat{\alpha})\right]\right]
\]

\[
\leq Sa \left[1 - \left[A_s(S, m, \hat{\alpha}) - A_s(S - 1, m - 1, \hat{\alpha})\right]\right] \leq Sa(1 - a) = \sigma_o^2
\]

\[
\Rightarrow \sigma_s^2 \leq \sigma_o^2
\]

\[
RVM = 1 - \left[A_s(S, m, \hat{\alpha}) - A_s(S - 1, m - 1, \hat{\alpha})\right] < 1 \quad \left(A_s(S, m, \hat{\alpha}) > A_s(S - 1, m - 1, \hat{\alpha})\right)
\]
Analysis of server group
BCC (CPS) - Poisson

\[\lambda_n = \Lambda_0 = \lambda \quad (n = 0, \ldots, m) \]
\[\mu_n = n\mu \quad (n = 1, \ldots, m) \]

\[p_n = \frac{a^n}{n! \sum_{j=0}^{m} \frac{a^j}{j!}} \quad (n = 0, \ldots, m) \]

\[S_\rho = \Pi_\rho = p_m = E_{1,m}(A_0) = \frac{a^m}{m! \sum_{j=0}^{m} \frac{a^j}{j!}} \quad \text{(Erlang B)} \]
Analysis of server group

BCC (CPS) - Poisson

\[A_o = a = \frac{\lambda}{\mu} \]

\[A_s = \sum_{k=0}^{m} kp_k = A_o \left(\frac{m}{k!} \sum_{j=0}^{m} \frac{A_o^k}{j!} \right) = A_o \left(1 - \frac{A_o^m}{m!} \right) = A_o \left(1 - E_{1,m}(A_o) \right) \]

\[A_p = A_o E_{1,m}(A_o) \]

\[\sigma_s^2 = \sum_{k=0}^{m} (k - A_s)^2 p_k = A_s(m) \left[1 - \left[A_s(m) - A_s(m-1) \right] \right] \]

\[< A_s(m) < A_o = \sigma_o^2 \left(A_s(m) > A_s(m-1) \right) \]

\[\sigma_s^2 = A_s(m) \left[1 - A_o \left(E_{1,m-1}(A_o) - E_{1,m}(A_o) \right) \right] < A_o \left[1 - A_o \left(E_{1,m-1}(A_o) - E_{1,m}(A_o) \right) \right] < A_o = \sigma_o^2 \left(E_{1,m-1}(A_o) > E_{1,m}(A_o) \right) \]

\[\Rightarrow \sigma_s^2 < \sigma_o^2 \]

\[RVM = 1 - \left[A_s(m) - A_s(m-1) \right] = 1 - A_o \left[E_{1,m-1}(A_o) - E_{1,m}(A_o) \right] < 1 \]
Analysis of server group

Erlang-Engset comparison

- # users / # servers

Engset

Erlang

Obs. 1: the comparison is performed between Erlang and Engset fixing the same offered load A_0.

Obs. 2:
- For small #users, Erlang provides excessive sovraestimation.
- For large #users, the two formulas tend to return very similar results.
Analysis of server group
BCC (CPS) - Pascal

\[\lambda_n = \hat{\lambda}'(c + n) \quad (n = 0, \ldots, m) \]
\[\mu_n = n\mu \quad (n = 1, \ldots, m) \]

\[\hat{\alpha} = \frac{\hat{\lambda}'}{\mu} = \frac{\alpha}{1 - \alpha \Pi_H} \]

\[S_p = p_m = \frac{\left(\begin{array}{c} c + m \\ m \end{array} \right) \hat{\alpha}^m}{\sum_{j=0}^{m} \left(\begin{array}{c} c + j \\ j \end{array} \right) \hat{\alpha}^j} \]

\[\Pi_p(c, m, \hat{\alpha}) = S_p(c + 1, m, \hat{\alpha}) \]

\[p_n = \frac{\left(\begin{array}{c} c + n - 1 \\ n \end{array} \right) \hat{\alpha}^n}{\sum_{j=0}^{m} \left(\begin{array}{c} c + j - 1 \\ j \end{array} \right) \hat{\alpha}^j} \quad (n = 0, \ldots, m) \]
Analysis of server group

BCC (CPS) - Pascal

\[A_o = \frac{c\alpha}{1-\alpha} \]
\[\Lambda_o = \frac{\sum_{j=0}^{m} \lambda_j p_j}{\mu} = \frac{\hat{\lambda}'(c+\bar{X})}{\mu} = \frac{\hat{\lambda}'(c+A_s)}{\mu} = \hat{\alpha}(c+A_s) \]

\[A_s = A_o (1 - \Pi_p) = \frac{c\alpha}{1-\alpha} (1 - \Pi_p) = \sum_{k=0}^{m} k p_k = c\hat{\alpha} \frac{\sum_{k=0}^{m-1} \binom{c+k}{k} \hat{\alpha}^k}{\sum_{j=0}^{m} \binom{c+j-1}{j} \hat{\alpha}^j} \]

\[A_p = (A_o - A_s) = A_o \Pi_p \]

\[\sigma_s^2 = \sum_{k=0}^{m} (k - A_s)^2 p_k = A_s(c,m,\hat{\alpha}) \left[1 + [A_s(c+1,m-1,\hat{\alpha}) - A_s(c,m,\hat{\alpha})] \right] \]

\[\sigma_s^2 < \sigma_o^2 \] (definition)

\[\text{RVM} = 1 + [A_s(c+1,m-1,\hat{\alpha}) - A_s(c,m,\hat{\alpha})] \leq 1 \]
Analysis of server group

\[S_t = \sum_{k=m}^{S} p_k \]
\[\Pi_t = \frac{1}{\Lambda_o} \sum_{k=m}^{S-1} \lambda_k p_k \]

- Bernoulli - Queue model M/M/S/0/S

\[\lambda_n = \lambda'(S - n) \quad n = 0,\ldots,S \]
\[\mu_n = n \mu \quad n = 1,\ldots, S \]
\[p_n = \binom{S}{n} a^n (1-a)^{S-n} \quad n = 0,\ldots,S \]

\[S_t = \sum_{k=m}^{S} \binom{S}{k} a^k (1-a)^{S-k} \]
\[\Pi_t = \frac{1}{\sum_{k=m}^{S-1} \lambda(S - k)} \binom{S}{k} a^k (1-a)^{S-k} = \sum_{k=m}^{S-1} \binom{S-1}{k} a^k (1-a)^{S-k-1} \]
\[\Pi_t(S, m, a) = S_t(S-1, m, a) \]
Analysis of server group

BCH(CPT)

- **Poisson** - Queue model $M/M/\infty$

\[
\lambda_n = \Lambda_0 = \lambda \\
\mu_n = n\mu \\
p_n = \frac{a^n}{n!} e^{-a} \\
S_t = \Pi_t = \sum_{k=m}^{\infty} \frac{a^k}{k!} e^{-a} \quad \text{(Molina)}
\]

- **Pascal** - Queue model $M/M/\infty$

\[
\lambda_n = \lambda'(c + n) \\
\mu_n = n\mu \\
p_n = \binom{c + n - 1}{n} \alpha^n (1 - \alpha)^c \\
S_t = \sum_{k=m}^{\infty} \binom{c + k - 1}{k} \alpha^k (1 - \alpha)^c \\
\Pi_t = \frac{\sum_{k=m}^{\infty} \lambda'(c + k) \binom{c + k - 1}{k} \alpha^k (1 - \alpha)^c}{c\alpha \frac{\mu}{1 - \alpha}} \\
\Pi_t(c, m, \alpha) = S_t(c + 1, m, \alpha)
\]
analysis of server group

BCD(CPR)

- **Bernoulli** - Queue model M/M/m/S - m/S

\[
\begin{align*}
\lambda_n &= \lambda'(S - n) \quad n = 0, \ldots, S \\
\mu_n &= \begin{cases}
n\mu & n = 1, \ldots, m - 1 \\
m\mu & n = m, \ldots, S
\end{cases} \\
p_n &= \begin{cases}
\binom{S}{n} \alpha^n & n = 0, \ldots, m - 1 \\
\binom{S}{n} \alpha^n \frac{n!}{m! m^{n-m}} & n = m, \ldots, S
\end{cases} \\
p_0^{-1} &= (1 + \alpha)^S + \sum_{k=m}^{S} \left(\binom{S}{k} \frac{k! m^{m-k}}{m!} - 1 \right) \alpha^k \\
S_r &= \sum_{k=m}^{S} p_k = \frac{p_m}{E_{1,S-m} \left(\frac{m}{\alpha} \right)} \\
\Pi_r &= \frac{1}{\Lambda_0} \sum_{k=m}^{S-1} \lambda_k p_k = \frac{S - m}{S - \tilde{n}} \frac{p_m}{E_{1,S-m-1} \left(\frac{m}{\alpha} \right)}
\end{align*}
\]
Analysis of server group

BCD(CPR)

- **Poisson - Queue model** $M/M/m$

\[
\lambda_n = \Lambda_0 = \lambda \quad n = 0, 1, \ldots
\]
\[
\mu_n = \begin{cases}
 n\mu & n = 1, \ldots, m - 1 \\
 m\mu & n = m, m + 1, \ldots
\end{cases}
\]
\[
p_n = \begin{cases}
 p_0 a^n \frac{1}{n!} & n = 0, \ldots, m - 1 \\
 p_0 a^n \frac{1}{m! m^{n-m}} & n = m, m + 1, \ldots
\end{cases}
\]

\[
p_0 = \left[\sum_{k=0}^{m-1} \frac{a^k}{k!} + \frac{a^m}{m!} \frac{m}{m-a} \right]^{-1}
\]

\[
S_r = \Pi_r = \sum_{k=m}^{\infty} p_k = E_{2,m}(A_0) = \frac{a^m}{m!} \frac{m}{m-a} \frac{m}{m-a} \left(\sum_{k=0}^{m-1} \frac{a^k}{k!} + \frac{a^m}{m!} \frac{m}{m-a} \right) \quad (\text{Erlang C})
\]
Analysis of server group

BCC (CPS) – BCH (CPT) – BCD (CPR) comparison

Obs. 1: the comparison is performed between Erlang and Engset fixing the same offered load A_o.

Traffic theory
Summary

- General considerations
- Traffic characterization
- Analysis of server groups
- Dimensioning server groups
 - Theoretical analysis
 - Wilkinson’s approach
 - Fredericks’ approach
 - Lindberger’s approach
Theoretical analysis
Overflow servers – Finite case

- Primary servers: \(n \)
- Overflow servers: \(m \)
- Sequential search

- Poisson offered traffic \(A_o = \sigma_o^2 = \frac{\lambda}{\mu} \)

- System described by a 2-d Markov chain with state \((j,i)\), \(j = 0,\ldots,n; \ i = 0,\ldots,m \)

\[
\begin{align*}
\lambda + (j + i)\mu p_{j,i} &= \lambda p_{j-1,i} + (j + 1)\mu p_{j+1,i} + (i + 1)\mu p_{j,i+1} \\
\lambda + (n + i)\mu p_{n,i} &= \lambda p_{n-1,i} + (i + 1)\mu p_{n,i+1} + \lambda p_{n,i-1} \\
(n + m)\mu p_{n,m} &= \lambda p_{n-1,m} + \lambda p_{n,m-1} \\
\sum_{j=0}^{n} \sum_{i=0}^{m} p_{j,i} &= 1
\end{align*}
\]
Theoretical analysis

Overflow servers – Finite case

\[S_r^m(A_0) = \sum_{v=0}^{m} \frac{A_0^{m-v}}{(m-v)} \left(v + r - 1 \right) \left(\frac{v + r - 1}{v} \right) \]

\[\frac{A_0^i}{j!} = \sum_{i=0}^{n} \frac{A_0^i}{j!} \quad E_{1,n}(A_0) = \frac{S_0^n}{S_1^n} \]

N.B.

\[p_{j,i} = \sum_{x=0}^{m-i} (-1)^x K_{i+x} \binom{i+x}{i} S_{i+x}^{i-x} \quad (\text{Brockmeyer}) \]

\[K_k = \sum_{r=k}^{m} (-1)^{r-k} \binom{r-1}{k-1} a_r \quad (k = 1, \ldots, m) \]

\[K_0 = \frac{1}{S_1^{n+m}} \]

\[a_r = \frac{1}{S_1^{n+m} S_r^n} \sum_{v=r}^{m} \binom{v-1}{r-1} S_0^{n+v} \quad (r = 1, \ldots, m) \]

- overflow servers

\[Q_i = \sum_{j=0}^{n} p_{j,i} = \sum_{x=0}^{m-i} (-1)^x K_{i+x} \binom{i+x}{i} S_{i+1+x}^{n-x} \]

- primary servers

\[P_j = \sum_{i=0}^{m} p_{j,i} = \frac{S_0^i}{S_1^n} \quad \text{Erlang-B per } j = n \]

Distributions
Theoretical analysis

Overflow servers – Finite case

Grade of service

\[A_w = A_0 E_{1,n}(A_0) \quad A_p = A_0 E_{1,n+m}(A_0) \]

\[A_s = \sum_{i=0}^{m} iQ_i = A_w - A_p = A_0 \left[E_{1,n}(A_0) - E_{1,n+m}(A_0) \right] = A_0 \left(\frac{S_0^n}{S_1^n} - \frac{S_0^{n+m}}{S_1^{n+m}} \right) \]

\[S_p(n) = \Pi_p(n) = E_{1,n}(A_0) \quad S_p(n+m) = \Pi_p(n+m) = E_{1,n+m}(A_0) \]

\[S_p(m) = \frac{S_{m+1}^n}{S_m^n} E_{1,n+m}(A_0) \quad \Pi_p(m) = \frac{A_p}{A_w} = \frac{E_{1,n+m}(A_0)}{E_{1,n}(A_0)} \]
Theoretical analysis
Overflow servers – Infinite case

Overflow servers: \(m = \infty \)

- 2-d Markov chain (\(m = \infty \))

\[
\begin{align*}
[\lambda + (j + i)\mu] p_{j,i} &= \lambda p_{j-1,i} + (j + 1)\mu p_{j+1,i} + (i + 1)\mu p_{j,i+1} \\
[\lambda + (n + i)\mu] p_{n,i} &= \lambda p_{n-1,i} + (i + 1)\mu p_{n,i+1} + \lambda p_{n,i-1} \\
\sum_{j=0}^{n} \sum_{i=0}^{\infty} p_{j,i} &= 1
\end{align*}
\]

- Solution

\[
p_{j,i} = (-1)^j C_0^n \sum_{v=0}^{\infty} \binom{v}{i} \frac{(-A_o)^v}{v!} \frac{C_v^j}{C_{v+1}^n C_v^n}
\]

\[
C_v^h = e^{-A_o} \sum_{s=0}^{h} \binom{v+s-1}{s} \frac{A_o^{h-s}}{(h-s)} \quad h = 1,2,...
\]

\[
C_0^h = e^{-A_o} \frac{A_o^h}{h!}
\]
Theoretical analysis
Overflow servers – Infinite case

- \(m = \infty \rightarrow \text{carried traffic} = \text{offered traffic in overflow group} \)
- Factorial moments of \(Q_i \) give for overflow servers

\[
M_k = \sum_{i=0}^{\infty} \binom{i}{k} Q_i = A_o^k \frac{C_0^n}{C_k^n} \quad \text{(Riordan)}
\]

\[
\begin{align*}
[M_1 = A_o E_{1,n}(A_o)] & \Rightarrow A_w = M_1 = A_o E_{1,n}(A_o) \\
& \Rightarrow \sigma_w^2 = A_w \left[1 - A_w + \frac{A_o}{1 + n + A_w - A_o} \right]
\end{align*}
\]

(Wilkinson - 1956)
Analysis of channel group

BCC (CPS)

- **Channel group**
 - *m* channels
 - *A*_o Poisson
 - BCC
 - \(A_s = A_o \left(1 - E_{1,m}(A_o)\right) \)
 - \(\sigma_s^2 = A_o A_s - m A_p + A_s - A_s^2 = A_s - A_o E_{1,m}(A_o) \left[m - A_s\right] \)
 - \(\text{RVM} = \frac{\sigma_s^2}{A_s} = 1 - A_o E_{1,m}(A_o) \frac{m - A_s}{A_s} < 1 \)
 - \(A_p = A_o E_{1,m}(A_o) \)
 - \(\sigma_p^2 = A_p \left[1 - A_p + \frac{A_o}{1 + m + A_p - A_o}\right] \) \(\text{Wilkinson’s Formula} \)
 - \(\text{RVM} = \frac{\sigma_p^2}{A_p} = 1 - A_p + \frac{A_o}{1 + m + A_p - A_o} = 1 + \frac{-A_p - A_p m + A_p A_s + A_o}{1 + m - A_s} = \)
 \[= 1 + \frac{A_o - A_p - A_p (m - A_s)}{1 + (m - A_s)} = 1 + \frac{A_s - A_p (m - A_s)}{1 + (m - A_s)} = 1 + \frac{\sigma_s^2}{1 + (m - A_s)} > 1 \]
Dimensioning of overflow channels

Wilkinson approach

- Channel group loaded by A_o, σ_o^2 with RVM > 1

- Dimensioning/analysis
 1. Compute A_{oe} and m_e knowing A_o e σ_o^2
 \[A_o = A_{oe}E_{1,m_e}(A_{oe}) \]
 \[\sigma_o^2 = A_o \left[1 - A_o + \frac{A_{oe}}{1 + m_e + A_o - A_{oe}} \right] \]
 2. Compute m or Π_p knowing Π_p or m
 \[A_p = A_o \Pi_p = A_{oe}E_{1,m_e+m}(A_{oe}) \]

$$A_{oe} = \sigma_{oe}^2$$
Dimensioning of overflow channels

Erlang formula

- **Erlang formula**

 \[E_{1,m}(A_o) = \frac{A_o^m}{m!} \sum_{i=0}^{m} \frac{A_o^i}{i!} = E(m, A_o) \]

- **Recursive Erlang formula**

 \[\left[E_{1,m}(A_o) \right]^{-1} = \frac{m}{A_o} \left[E_{1,m-1}(A_o) \right]^{-1} + 1 \quad m \text{ integer} \]

- **Erlang formula for } m \text{ real (Fortet representation)}**

 \[\left[E_{1,m}(A_o) \right]^{-1} = A_o \int_{0}^{\infty} e^{-A_o y} (1 + y)^m dy \quad m \text{ real} \]

- **Approximation of real } m \text{ value to the closest integer**
 - Ceiling: dimensioning of overflow group
 - Floor: dimensioning of equivalent group
Dimensioning of overflow channels

Overflow traffic - Average

Calculation based on Erlang-B formula

Average offered traffic, A_o (Erlang)

Average lost traffic, A_p (Erlang)

0 2 4 6 8 10 12 14

10^{-2} 10^{-1} 10^0 10^1

Formula di Erlang-B

Intensita media del traffico offerto, A_o (Erlang)

Valore medio del traffico di trabocco, A_p (Erlang)

Average offered traffic, A_o (Erlang)
Dimensioning of overflow channels

Overflow traffic - Average

Calculation based on Erlang-B formula

Average offered traffic, A_o (Erlang)

Average lost traffic, A_p (Erlang)

Formula di Erlang-B

Intensità media del traffico offerto, A_o (Erlang)

Valore medio del traffico di trabocco, A_p (Erlang)

Calculation based on Erlang-B formula

$m = 0-50$
Dimensioning of overflow channels

Overflow traffic - Variance

Average offered traffic, A_o (Erlang)

Variance of lost traffic, A_p (Erlang)

M/M/m/0

Traffic theory
Dimensioning of overflow channels

Overflow traffic - Variance

Average offered traffic, A_O (Erlang)

Variance of lost traffic, A_p (Erlang)
Dimensioning of overflow channels

Sum of multiple flows

- Dimensioning of overflow traffic for \(n \) independent traffic flows
- \(Hp: \) statistical independence of flows \(A-B_i \) \(\Rightarrow \) independent overflow traffics
 \(\Rightarrow \) Offered traffic to \(A-C \) derived directly from sum of lost traffics
Dimensioning of overflow channels

Sum of multiple flows

Numerical solution for two Wilkinson equations \(\Rightarrow \) Rapp approximation

\[
A_{o_e} = \sigma_0^2 + 3z(z - 1) \quad z = \frac{\sigma_0^2}{A_o} \quad A_o = A_{o_e}E_{1, m_e}(A_{o_e})
\]

\[
A_p = A_o \Pi_p = A_{o_e}E_{1, m + m_e}(A_{o_e})
\]

\[
A_o = \sum_{i=1}^{n} A_{p_i} \quad \sigma_o^2 = \sum_{i=1}^{n} \sigma_{p_i}^2
\]
Dimensioning of channel groups

Fredericks model

- Applicable for a traffic A_o, σ_o^2 with arbitrary z ($z = RVM <> 1$)
- Real situation
 - Group of m channels
 - Births: individual with **general** interarrival distribution
- Model
 - z integer, $z>1$
 - Births: in groups of z, with **exponential** interarrival distribution ($A_{og} = \sigma_{og}^2 = A_o$)
 - Deaths: in groups of z
 - z channel groups with m/z channels each

![Diagram showing general and exponential arrivals](image-url)

- General
- Exponential
- \times 1 arrival
- \square z arrivals
Dimensioning of channel groups

Fredericks model

- H_p: z channels requested per birth, resulting in one channel requested per group

$$A_{og} = \sigma_{og}^2 = A_o$$

$$A_{oz} = \sigma_{sz}^2 = A_{og}/z$$

m/z A_{sz}, σ_{sz}^2 \ldots m/z A_{sz}, σ_{sz}^2 \ldots m/z A_{sz}, σ_{sz}^2
Fredericks model

Analysis

- Offered traffic in \(z \) flows has the first two moments of the real traffic
 - \(H_p: \) very small loss probability \((A_s \cong A_o) \)
 - \(X = \) Total number of busy channels in the \(z \) groups
 - \(Y = \) Number of busy channels in each group

\[
\begin{align*}
E[Y] &= \text{Var}[Y] = \frac{A_{og}}{z} \\
X &= zY \\
E[X] &= zE[Y] = z \frac{A_{og}}{z} = A_o \\
\text{Var}[X] &= z^2 \text{Var}[Y] = z^2 \frac{A_{og}}{z} = zA_o = \sigma_o^2
\end{align*}
\]

- \(A_o = zA_{oz} \), \(A_s = zA_{sz} \), \(A_p = zA_{pz} \)
- Global loss probability = Individual group loss probability

\[
\Pi_p = E_{1/z} \left(\frac{A_o}{z} \right)
\]

- Fredericks model hold also for \(z \) real values and for \(z < 1 \)
Fredericks model

Analysis

\[A_p = zA_{pz} = z\frac{A_o}{z} E_{1,\frac{m}{z}} \left(\frac{A_o}{z} \right) = A_o E_{1,\frac{m}{z}} \left(\frac{A_o}{z} \right) \]

\[\sigma_p^2 = z^2 \sigma_{pz}^2 = z^2 A_{pz} \left(1 - A_{pz} + \frac{A_{oz}}{1 + \frac{m}{z} + A_{pz} - A_{oz}} \right) \]

\[= zA_p \left(1 - \frac{A_p}{z} + \frac{A_o}{z + m + A_p - A_o} \right) \]

\[A_s = zA_{sz} = z\frac{A_o}{z} \left[1 - E_{1,\frac{m}{z}} \left(\frac{A_o}{z} \right) \right] = A_o \left[1 - E_{1,\frac{m}{z}} \left(\frac{A_o}{z} \right) \right] \]

\[\sigma_s^2 = z^2 \sigma_{sz}^2 = z^2 \left[A_{sz} - A_{oz} E_{1,\frac{m}{z}} \left(\frac{A_o}{z} \right) \left(\frac{m}{z} - A_{sz} \right) \right] = z^2 \left[\frac{A_s}{z} - A_{pz} \frac{m - A_s}{z} \right] \]

\[= zA_s \left[1 - \frac{m - A_s}{zA_s} A_p \right] \]
Loss per flow
Lindberger model

- Offered traffic = sum of \(n \) flows
- Wilkinson-Fredericks models only give global average loss
- Lindberger model gives loss per flow
 - \(n \) flows statistical independent
 - \(z_i = \sigma_{oi}^2 / A_{oi} \) arbitrary (\(i = 1, \ldots, n \))
 - Arrivals of “heavy” calls, each requesting \(z_i \) channels, with exponential interarrivals
 - Equivalent to receiving a Poisson traffic \(A_{oi} / z_i \) (one request per time) on a group of \(m/z_i \) servers

\[\Rightarrow \text{Same Fredericks equations if} \]
 - \(A_{oi}, \sigma_{oi}^2 \) non-Poisson traffic replaced by \(A_{ozi} = \sigma_{ozi}^2 = A_{oi} / z_i \)
 - Each request of the new flow \(i \) occupies \(z_i \) channels out of the \(m \) total channels
Lindberger model

Analysis

- X_i : number of accepted requests for i-th flow
- X : total number of busy channels $X = \sum_{i=1}^{n} X_i z_i$
- It is proven that
 \[
 \pi(k_1,\ldots,k_n) = \Pr\{X_1 = k_1,\ldots,X_n = k_n\} = \frac{1}{G} \prod_{i=1}^{n} \frac{A_{oz_i}^{k_i}}{k_i!} \left(\text{generalized Erlang formula}\right)
 \]
 \[
 \sum \pi(k_1,\ldots,k_n) = 1 \quad \text{(gives G)}
 \]
- Loss probability $\Pi_{pi} = \Pr\{X > m - z_i\}$
- Complex computation of distribution $\pi \Rightarrow$ approximation of π such that
 \[
 \frac{\Pi_{pi}}{\Pi_{p}} = \frac{z_i}{z} = \frac{\frac{\sigma^2_{oi}}{A_{oi}}}{\frac{\sigma^2_{o}}{A_o}} = \frac{\frac{\sigma^2_{o}}{A_o}}{\sum_{i=1}^{n} \frac{\sigma^2_{oi}}{A_{oi}}} \quad \text{(stat. indip. of n flows)}
 \]

Traffic theory
Dimensioning/analysis of channel groups

Overall equations

<table>
<thead>
<tr>
<th>Globale</th>
<th>Rivolo i – esimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pi_p = E_{1,m} \left(\frac{A_o}{z} \right)$</td>
<td>$\Pi_{pi} = \Pi_p \frac{z_i}{z}$</td>
</tr>
<tr>
<td>$A_p = A_o \Pi_p$</td>
<td>$A_{pi} = A_{oi} \Pi_{pi}$</td>
</tr>
<tr>
<td>$\sigma_p^2 = zA_p \left(1 - \frac{A_p}{z} + \frac{A_o}{z + m + A_p - A_o} \right)$</td>
<td>$\sigma_{pi}^2 = A_{pi} \left(1 + \frac{z_p - 1}{\sigma_o^2} \sigma_{oi}^2 \right)$</td>
</tr>
<tr>
<td>$A_s = A_o (1 - \Pi_p)$</td>
<td>$A_{si} = A_{oi} (1 - \Pi_{pi})$</td>
</tr>
<tr>
<td>$\sigma_s^2 = zA_s \left[1 - m - A_s \frac{A_p}{zA_s} \right]$</td>
<td>$\sigma_{si}^2 = z_i A_{si} + \frac{A_s - m}{A_p} A_{pi}^2$</td>
</tr>
</tbody>
</table>

$$z = \frac{\sigma_o^2}{A_o} \quad z_i = \frac{\sigma_{oi}^2}{A_{oi}} \quad z_p = \frac{\sigma_p^2}{A_p}$$