Optical Networking: What is Its Future?

Hui Zang

Sprint Advanced Technology Laboratories

INFOCOM, San Francisco, CA, March 2003

1

Introduction - Network Architecture

Service Layer (data + voice)

INFOCOM, San Francisco, CA, March 2003

What do Carriers Want?

- Adding capacity when & where needed
- Flexibility in managing/provisioning
- Reliability & Survivability
- Low cost (starting & operational)

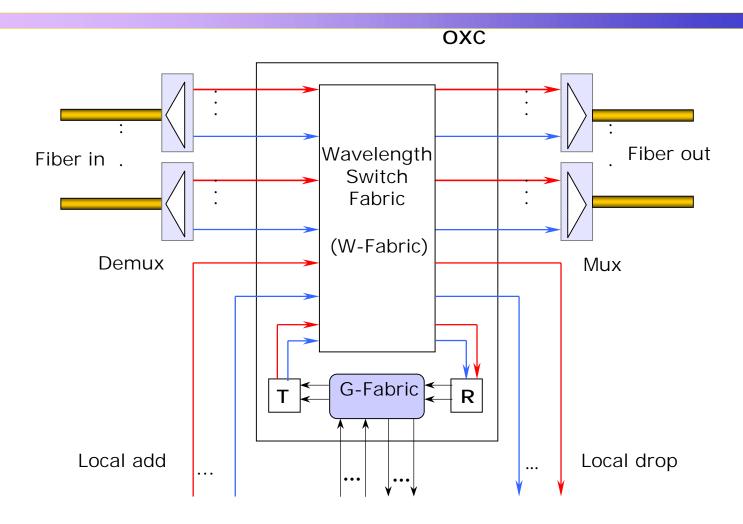
INFOCOM, San Francisco, CA, March 2003

Optical Networking: What is Its Future?

- High capacity (each channel can be up to 40G)
- Agile / automated provisioning
- Consolidated control / management
- Emerging new services (such as Direct Wavelength Service)
- Guaranteed, fast recovery so that higher layers are oblivious to failures in the physical layer
- Differentiated services

Roles of Optics vs. Electronics vs. Software

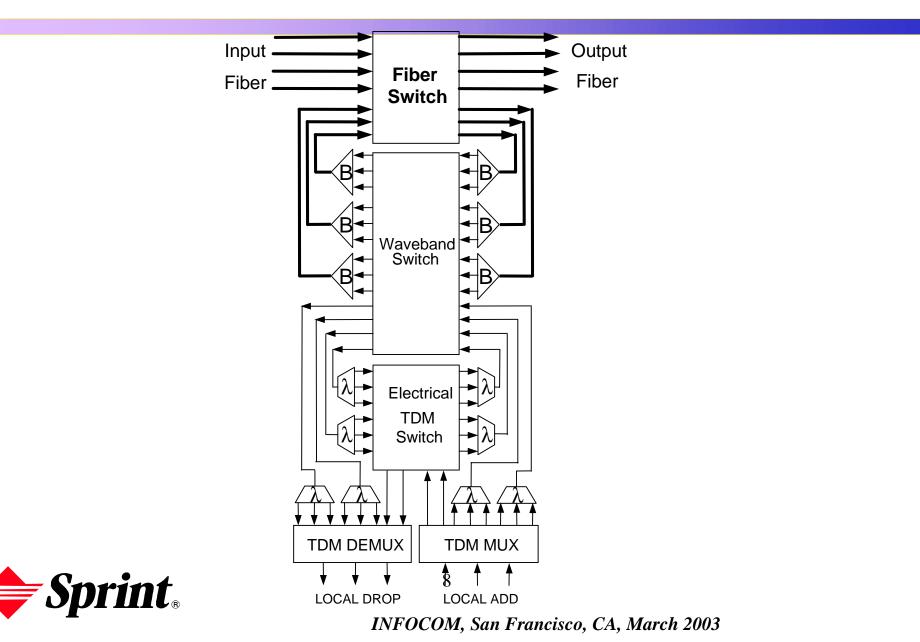
- Optics & Electronics offer more capacity
- Optics may increase transmission distance, electronics may still be required for regeneration
- Software required to manage the capacity
- Software required to fill the gap between channel capacity and provisioning granularity
- Software can be designed to alleviate some of the regeneration needs



Next Generation Optical Switches

- OOO/OEO Hybrid
 - regeneration when necessary
- Hierarchical
 - Fiber switching
 - Waveband switching
 - Wavelength switching
 - TDM switching
- Unified control plane / management plane
- Optical wavelength conversion possible

OXC architecture (1)



INFOCOM, San Francisco, CA, March 2003

7

OXC architecture (2)

Network design problem: what kind of switch is required where?

- Subject to
 - geographical location
 - Traffic forecast
- Objective:
 - Feasibility
 - Resource efficiency
 - Scalability

Bandwidth Provisioning & Protection

- Given:
 - Physical topology
 - connection (LSP) request set (either static or dynamic)
- To solve:
 - Determine virtual topology (setup lightpaths).
 - Route the lightpaths over physical topology.
 - Assign wavelengths to the lightpaths.
 - Route the low-speed connection requests over the virtual topology.
 - Protect low-speed connections by backup LSPs or backup wavelength LSPs

Research Challenges (Cont)

- Subject to:
 - Wavelength conversion constraints
 - Regeneration constraints
 - Shared-risk-link group constraints
 - SLA (service interruption time, availability)
- Objective:
 - Satisfy connection requests
 - Satisfy SLAs
 - Minimize the usage of wavelength conversion ports, regeneration ports, grooming ports
 - Resource efficiency

