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3.3.4 Marquardt’s Method

* Cauchy’s
— When x is far from x©) good reduction
(041 — () _ )y (5 ()
* Newton’s

— |ldeal search directions near the solution
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Step 1. Define x = initial estimate of x*
M = maximum number of iterations allowed
& = convergence criterion

Step 2. Set £k = 0. A = 10~
Step :

— termination criteria

>

StepS. Is k = M?
Yes: Go to step 11.

No: Continue.
Step 6. Calculate s(x*™) = —[H"™

Step 7. Set x*-b —® 4 s(x®Y.
Yes: Go (0 step—©-

No: Go to step 10.
Step 9. Set A"V =A% and k = k£ + 1. Go to step 3.
Step 10. Set A"™ = 2A"®, Go to step 6.
Step 11. Print results and stop.

AL VF(x®),



* Advantages
— Simplicity, descent property
— excellent convergence rate near x°
— Absence of a line search

* Disadvantages

— Need to calculate H®



3.3.5 Conjugate Gradient Methods

* Quadratically convergent:

terminates in approximately N steps when
applied to a quadratic function

— Employ gradient information to generate
conjugate directions
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* f(x) quadratic

— N-1 directions and N line searches

* f(x) not quadratic
— Additional directions and line searches
— Restart every N or N+1 steps



3.3.6 quasi-Newton Methods

* Based on properties of quadratic functions

* Mimic Newton’s method using only first-order
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3.3.7 Trust Regions

* Gradient-based methods
— Direction search
— Line search
* Trust region methods
— Form a “trustworthy” approximation of f(x)
— Find the minimum of the approximation
 Marquardt’s methods

— A determines the approximation
— Approximation becomes quadratic in the limit



3.3.8 Gradient-based Algorithm

A general algorithm including all of the methods



Step 1. Define M = maximum number of allowable iterations
N = number of variables
x™ = initial estimate of x*
g, = overall convergence criteria

g, = line search convergence criteria
Step 2. Set £k = 0.
Step 3. Calculate Vf(x™).
Step 4. Is |[Vf(x"™] = &,?
Yes: Print “‘convergence: gradient™; go to 13.

No: Continue.
Step 5. Is k = M?

Yes: Print ““termination: Kk = M™; go to 13.
Ne—Cormtinue:
Step 6. Calculate s(x™).
e A Ehs Ty < 07

No: Set s(x*) = =V f(x"™). Print “‘restart: bad direction™; Go to 9.
Step 8. Find «'™ such that f(x*® + a®s(x™)) — minimum using ..
Step 9. Set x**V = x® + a®s(x™).



Step 10. Is f(x**1) < f(x)?
Yes: Go to 11.
No: Print ““termination: no descent’; go to 13.
Step 11. Is ||Ax||/||x™] = &,?
Yes: Print ““termination: no progress™; go to 13.
No: Go to 12.
Step 12. Set k = k + 1. Go to 3.
Step 13. Stop.



3.3.9 Numerical Gradient Approximations

* So far, the gradient and Hessian matrix
available.

* |n practical, not really.

af(x) _ fx + ee”) — f(x)
ox; |, = &
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3.4 Comparison of Methods and Numerical Results

 What is known about the efficiency comes
from numerical experiments

* Results in publications
 [H72,5571,CS75]



Summary

* Necessary and sufficient conditions for
existence of a minimum of a function

e Survey of methods



