Functions of Several Variables

Menglin Liu
Group Meeting
June 18, 2010

3.3.4 Marquardt's Method

Cauchy's

– When $x^{(0)}$ is far from $x^{(*)}$, good reduction $x^{(k+1)} = x^{(k)} - \alpha^{(k)} \nabla f(x^{(k)})$

Newton's

- Ideal search directions near the solution $x^{(k+1)} = x^{(k)} - \mathbf{H}^{(k)} \nabla f(x^{(k)})$

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} s(x^{(k)})$$
$$s(x^{(k)}) = -\left[\mathbf{H}^{(k)} + \lambda^{(k)}\mathbf{I}\right]^{-1} \nabla f(x^{(k)}) \qquad \alpha^{(k)} = 1$$

Step 1. Define $x^{(0)} = \text{initial estimate of } x^*$ M = maximum number of iterations allowed $\varepsilon = \text{convergence criterion}$

termination criteria

Step 2. Set
$$k = 0$$
. $\lambda^{(0)} = 10^4$.

Step 3. Calculate $\nabla f(x^{(k)})$.

Step 4. Is
$$\|\nabla f(x^{(k)})\| < \varepsilon$$
?

Yes: Go to step 11.

No: Continue.

Step 5. Is $k \ge M$?

Yes: Go to step 11.

No: Continue.

Step 6. Calculate $s(x^{(k)}) = -[\mathbf{H}^{(k)} + \lambda^{(k)}\mathbf{I}]^{-1} \nabla f(x^{(k)})$.

Step 7. Set $x^{(k+1)} - x^{(k)} + s(x^{(k)})$

Step 8. Is $f(x^{(k+1)}) < f(x^{(k)})$?

Yes: Go to step 9.

No: Go to step 10.

Step 9. Set $\lambda^{(k+1)} = \frac{1}{2}\lambda^{(k)}$ and k = k + 1. Go to step 3.

Step 10. Set $\lambda^{(k)} = 2\lambda^{(k)}$. Go to step 6.

Step 11. Print results and stop.

- Advantages
 - Simplicity, descent property
 - excellent convergence rate near x^*
 - Absence of a line search
- Disadvantages
 - Need to calculate $\mathbf{H}^{(k)}$

3.3.5 Conjugate Gradient Methods

- Quadratically convergent: terminates in approximately N steps when applied to a quadratic function
 - Employ gradient information to generate conjugate directions

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} s(x^{(k)})$$

$$s^{(k)} = -g^{(k)} + \sum_{i=0}^{k-1} \gamma^{(i)} s^{(i)}$$

$$s^{(k)} = -g^{(k)} + \left[\frac{||g^{(k)}||^2}{||g^{(k-1)}||^2} \right] s^{(k-1)}$$

- f(x) quadratic
 - N-1 directions and N line searches
- f(x) not quadratic
 - Additional directions and line searches
 - Restart every N or N+1 steps

3.3.6 quasi-Newton Methods

- Based on properties of quadratic functions
- Mimic Newton's method using only first-order

$$\begin{split} & x^{(k+1)} = x^{(k)} + \alpha^{(k)} \, s\big(x^{(k)}\big) \\ & s\big(x^{(k)}\big) = -\mathbf{A}^{(k)} \nabla f\big(x^{(k)}\big) \\ & \Delta g = \mathbf{C} \Delta x \\ & \mathbf{A}^{(k+1)} = \mathbf{A}^{(k)} + \mathbf{A}^{(k)}_c \\ & \mathbf{A}^{(k)} = \mathbf{A}^{(k-1)} + \frac{\Delta x^{(k-1)} \, \Delta x^{(k-1)T}}{\Delta x^{(k-1)T} \, \Delta g^{(k-1)}} - \frac{\mathbf{A}^{(k-1)} \, \Delta g^{(k-1)} \, \Delta g^{(k-1)T} \, \mathbf{A}^{(k-1)}}{\Delta g^{(k-1)T} \, \mathbf{A}^{(k-1)} \, \Delta g^{(k-1)T}} \end{split}$$

3.3.7 Trust Regions

- Gradient-based methods
 - Direction search
 - Line search
- Trust region methods
 - Form a "trustworthy" approximation of f(x)
 - Find the minimum of the approximation
- Marquardt's methods
 - $-\lambda$ determines the approximation
 - Approximation becomes quadratic in the limit

3.3.8 Gradient-based Algorithm

A general algorithm including all of the methods

Step 1. Define M = maximum number of allowable iterations

N = number of variables

 $x^{(0)}$ = initial estimate of x^*

 ε_1 = overall convergence criteria

 ε_2 = line search convergence criteria

Step 2. Set k=0.

Step 3. Calculate $\nabla f(x^{(k)})$.

Step 4. Is $\|\nabla f(x^{(k)})\| \leq \varepsilon_1$?

Yes: Print "convergence: gradient"; go to 13.

No: Continue.

Step 5. Is k > M?

Yes: Print "termination: k = M"; go to 13.

No: Continue.

Step 6. Calculate $s(x^{(k)})$.

Step 7. Is $\nabla f(x^{(k)}) s(x^{(k)}) < 0$?

Yes: Go to 9.

No: Set $s(x^{(k)}) = -\nabla f(x^{(k)})$. Print "restart: bad direction"; Go to 9.

Step 8. Find $\alpha^{(k)}$ such that $f(x^{(k)} + \alpha^{(k)}s(x^{(k)})) \rightarrow \text{minimum using } \epsilon_2$.

Step 9. Set $x^{(k+1)} = x^{(k)} + \alpha^{(k)} s(x^{(k)})$.

Step 10. Is $f(x^{(k+1)}) < f(x^{(k)})$?

Yes: Go to 11.

No: Print "termination: no descent"; go to 13.

Step 11. Is $||\Delta x||/||x^{(k)}|| \le \varepsilon_1$?

Yes: Print "termination: no progress"; go to 13.

No: Go to 12.

Step 12. Set k = k + 1. Go to 3.

Step 13. Stop.

3.3.9 Numerical Gradient Approximations

- So far, the gradient and Hessian matrix available.
- In practical, not really.

$$\frac{\partial f(x)}{\partial x_i} \bigg|_{x=\overline{x}} = \frac{f(\overline{x} + \varepsilon e^{(i)}) - f(\overline{x})}{\varepsilon}$$

$$\frac{\partial f(x)}{\partial x_i} \bigg|_{x=\overline{x}} = \frac{f(\overline{x} + \varepsilon e^{(i)}) - f(\overline{x} - \varepsilon e^{(i)})}{2\varepsilon}$$

3.4 Comparison of Methods and Numerical Results

- What is known about the efficiency comes from numerical experiments
- Results in publications
- [H72,SS71,CS75]

Summary

- Necessary and sufficient conditions for existence of a minimum of a function
- Survey of methods