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5.6 SADDLEPOINT CONDITIONS

The discussion of Kuhn—Tucker optimality conditions of Sections 5.4 and 3.5
assume that the objective function and the constraints are differentiable. We
now discuss constrained optimality criteria for nondifferentiable functions.

Definition

A function f(x, v) is said to have a saddlepoint at (x*, y*) if f(x¥, v) = f(x*,
v¥) = flx, v¥) for all x and v.

flx,y) =2 — xy + 2y

saddlepoint at the point x* = 2, v¥ = 4,

f(2.y) = f(2.4) = flx. 4),  forall y =0 and all real x
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Consider the general NLP problem:
Minimize  fix)

Subject to  g;(x) = 0 forj=1,....J
XeE S

The Kuhn-Tucker saddlepoint problem (KTSP) is as follows: Find (x*, u™)
such that

Lix*, w) = Lix*, u*) = Lix, u*)

allu = 0 and allx = §
where

Lix. u) = f(x) = E g (x)
i
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Theorem 5.3 Sufficient Optimality Theorem

[f (x*, u*) is a saddlepoint solution of a KTSP, the x* is an optimal solution
to the NLP problem.

A proof of this theorem is available in Mangasarian [2, Chap. 3].

Remarks

1. No convexity assumptions of the functions have been made in Theorem
5.3.
2. No constraint qualification is invoked.

3. Nonlinear equality constraints of the form i, (x) = Ofork=1,....K
can be handled easily by redefining the Lagrangian function as

Lx, u,v) = f(x) — > ug;(x) — > v (x)

b k

Here the variables v, for k = 1, .. .. K will be unrestricted in sign.

4. Theorem 5.3 provides only a sufficient condition. There may exist some
NLP problems for which a saddlepoint does not exist even though the
NLP problem has an optimal solution.
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Existence of Saddlepoints. There exist necessary optimality theorems that
guarantee the existence of a saddlepoint solution without the assumption of

differentiability. However, they assume that the constraint qualification is met
and that the functions are convex.
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Theorem 5.4 Necessary Optimality Theorem

Let x* minimize f(x) subject to g(x) = 0,j=1....Jand x € §. Assume
S is a convex set, f(x) is a convex function, and g;(x) are concave functions
on S. Assume also that there exists a point x € § such that g;(x) > 0 for all
j=172 J. then there exists a vector of multipliers ™ = 0 such that

n Ay s s ow

(x*, u*) 1s a saddlepoint of the Lagrangian function

Lix. u) = f(x) — z u;g;(x)
J

satisfying
L(x*, u) = L(x*, u*) = L(x, u®)
forall x € Sand u = 0.

For a proof of this theorem, refer to the text by Lasdon [3, Chap. 1].

Even though Theorem 3.3 and the KTSP provide sufficient conditions for
optimality without invoking differentiability and convexity, determination of
a saddlepoint to a KTSP is generally difficult. However, the following theorem

makes it computationally more attractive.

How to find a saddlepoint? 5
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A convex =&t &

A non-convex 2t with a lins-zegment frm)
outside the set.
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Theorem 5.5

A solution (x*, u*) with u* = 0 and x* € § is a saddlepoint of a KTSP if
and only if the following conditions are satisfied:

(1) x* minimizes Lix, u®) overall x € §
(i) g;(x*) =0forj=1,..., J
(iii) ujgj(x V)=0forj=1,..., J

For a proof, see Lasdon [3, Chap. 1].
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5.7 SECOND-ORDER OPTIMALITY CONDITIONS

[n Sections 5.4-5.6, we discussed the first-order necessary and sufficient con-
ditions, called the Kuhn-Tucker conditions, for constrained optimization
problems using the gradients of the objective function and constraints. Sec-
ond-order necessary and sufficient optimality conditions that apply to twice-
differentiable functions have been developed by McCormick [5], whose main
results are summarized in this section. Consider the following NLP problem.
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Problem Pl

Minimize  f(x)

Subject to  g;(x) = 0 J=1.2..... J
h(x) =0 k=1,2...., K
x e RY

The first-order KTCs are given by

Vix) — 2 uVg(x) — Mo Vh(x) =0 (5.40)

j
gx)=0 j=1.....J (5.41)
h(x) =0 k=1 ....K (5.42)
ugi(x) =0 j=1,...,/J (5.43)
wu=0 j=1....J (5.44)

Definitions

x is a feasible solution to an NLP problem when g(x) = 0 for all j and
h(x) = 0 for all k.

is a local minimum to an NLP problem when x* is feasible and f(x*)
= f(x) for all feasible x in some small neighborhood &(x*) of x*,

is a strict (unique or isolated) local minimum when x* is feasible and
f(x*) < f(x) for feasible x # x* in some small neighborhood 8(x*) of
x*,

_x>!f

xF
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Let us first consider the basic motivation for the second-order optimality

conditions. For simplicity, consider an equality-constrained NLP problem as
follows:

Minimize  f(x)

Subject to A (x) = 0 k=1,2,..., K
The first-order KTCs are given by h,(x) = 0, k= 1,... .k,
Vix) — > v, Vh(x) = 0 (5.45)
Kk

Consider a point x that satisfied the first-order conditions. To check further
whether it 1s a local minimum, we can write down the Taylor series expansion
at the point x using higher order terms for each function f and h, as follows:

AR = fx + A0 — ()
= Vf(x) Ax + + Ax" H; Ax + O(Ax) (5.46)

where O(Ax) are very small higher order terms involving Ax.

= Vh,() Ax + 1 AxT H, Ax + O(Ax) (5.47)
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where H, is the Hessian matrix of &, (x) evaluated at x. Multiply Eq. (5.47)
by the Kuhn—Tucker multiplier v;, and sum overall k =1, .. ., K. Subtracting
this sum from Eq. (5.46), we obtain

Af(x) — g v Al (x) = [Vf{f) - g Ug ?hk&)] Ax

+ 7 MT[HI - > Uka] Ax + O(Ax) (5.48)

k
For x + Ax to be feasible,
Ah,(x) =0 (5.49)

Assuming that the constraint qualification is satisfied at x, the Kuhn-Tucker
necessary theorem implies that

Vix) — > v, Vi (x) = 0 (5.50)
k
Using Eqgs. (5.49) and (5.50), Eq. (5.48) reduces to

Af(x) = + mT[HJ. - Uka] Ax + O(Ax) (5.51)

k
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For x to be a local minimum, it is necessary that Af(x) = 0 for all feasible
movement Ax around x. Using Eqs. (5.49) and (5.51), the above condition
implies that

MT[HI - kak] Ax = 0 (5.52)

for all Ax satisfying
A(x)=0 fork=1.....K (5.53)

Using Eq. (5.47) and 1gnoring the second and higher order terms in Ax,
Eq. (5.53) reduces to

A (X) = VA, (x) Ax = 0

Thus assuming that the constraint qualification is satisfied at x, the necessary
conditions for x to be a local minimum are as follows:

1. There exists v,, k = 1, . . ., K, such that (x, v) is a Kuhn—Tucker point.
2. AX"[H, — > v,H,] Ax = 0 for all Ax satisfying
k

Vh(x) Ax =0 fork=1,.... K
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Similarly, the sufficient condition for x to be strict local minimum is given
by

Af(x) =0 for all feasible Ax around x
This implies that
MT|:HJ' - E Uka:| ﬁx :" 0
k
for all Ax satisfying

Vh,(x) Ax = 0 forallk=1,....K (5.54)

We shall now present the formal statements of second-order necessary and
sufficient conditions for an NLP problem involving both equality and in-
equality constraints.
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Theorem 5.6 Second-Order Necessity Theorem

Consider the NLP problem given by Problem PI. Let f, g, and & be twice- &
@ differentiable functions, and let x* be feasible for the nonlinear program. Let = N
the active constraint set at x* be I = {j|g;(x*) = 0}. Furthermore, assume that
Vg;(x*) for j € I and Vi (x*) for k = 1, 2, .. ., K are linearly independent.

Then the necessary conditions that x* be a local minimum to the NLP problem
are as follows:

1. There exists («*, v™) such that (x*, u*, v*) is a Kuhn—Tucker point.
2. For every vector y .y, satisfying

Vgi(x*)y =0 forje I (5.55)
Vi (x*)y =0 fork=1,2,....K (5.56)

it follows that
yTH, (x*, u*, v¥)y = 0 (5.57)

where
J K
Lix. u,v) = f(x) — ; u;g;(x) — ;;l v, (x)

e — and H, (x*, u*, v™) 1s the Hessian matrix of the second partial derivatives

of L with respect to x evaluated at (x*, u™, v¥*). Page 17



Example 5.7 [5]

Minimize f(x) = (x;, — 1)* + x3

Subject to  g,(x) = —x; + x3 =0

Suppose we want to verify whether x* = (0, 0) 1s optimal.
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Solution
Yi(x) = [2(x; — 1), 2x%]

Vo,(x) = (—=1,2x,)  I={l1)

Since Vg, (x*) = (—1, 0) is linearly independent, the constraint qualification
is satisfied at x*. The first-order KTCs are given by

20, — 1) +u, =0
2%, -~ 2oty = [}
u(—x; + x3) =0
i, = 0

Here x* = (0. 0) and uf = 2 satisfy the above conditions. Hence, (x*, ™) =
(0, 0, 2) is Kuhn—Tucker point and x* satisfies the first-order necessary con-
ditions of optimality by Theorem 5.1. In other words. we do not know whether
or not (0, 0) is an optimal solution to the NLP problem!
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Let us now apply the second-order necessary conditions to test whether (0,

0) 1s a local minimum to the NLP problem. The first part of Theorem 5.6 is

already satisfied, since (x*, u®) = (0, 0, 2) 1s a Kuhn—Tucker point. To prove
e——— the second-order conditions. compute

>0
H(x, w) = [0 2 - ZH]]

At (X, u™),

.. 2 0
HL(/‘C:F:! ”’:‘) - [0 4:|

We have to verify whether

s L

for all y satisfying

Vo, )y =0  or (-1, 0)(?) =0

2

In other words. we need to consider only vectors (y,, v,) of the form (0. vy,)
to satisfy Eq. (5.57). Now,
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2 olfo ,
.V = — ] < ?
(0, v,) 0 —4]|y, 4y; < 0 tor all y, # 0
Thus, x* = (0, 0) does not satisfy the second-order necessary conditions. and

hence its 1s not a local minimum for the NLP problem.
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o Theorem 5.7 Second-Order Sufficiency Theorem

Sufficient conditions that a point x* is a strict local minimum of the NLP
problem PI, where f, g, and h, are twice-differentiable functions, are as
follows:

(i) There exists (u™, v¥) such that (x*, u*, v*) 1s a Kuhn—Tucker point.
(ii) For every nonzero vector y .y, satisfying

Vgx¥)y =0 jEI = {jlg*) = 0. uF > 0} (5.58)
Vg;(x¥)y =0 jE L = {lg;(x*) =0, u = 0] (5.59)
Vh (x*)y = 0 k=1,2,....K (5.60)
y #0
it follows that
yTH, (X%, w*, vF)y > 0 (5.61)

Note: I, U I, = I. the set of all active constraints at x*,
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5.8 GENERALIZED LAGRANGE MULTIPLIER METHOD

The usefulness of the Lagrange multiplier method for solving constrained
optimization problems is not limited to differentiable functions. Many engi-
neering problems may involve discontinuous or nondifferentiable functions to

be optimized. Everett [4] generalized the Lagrange multiplier method pre-
sented earlier to handle such problems.
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Consider the NLP problem

Minimize  f(x)
Subject to  g;(x) = b, forj=1.2.....J

xe S

where S is a subset of RY, imposing additional restrictions on the variables x;
(e.g.. S may be a discrete set).

Everett’s generalized Lagrangian function corresponding to the NLP prob-
lem is given by

g
E(x: 2) = [0 = 3 Ag;(0) (5.62)
=

where the A;’s are nonnegative multipliers.
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Suppose the unconstrained minimum_:::f E(x: A) over all x € S is attained
at the point x for a fixed value of A = A. Then. Everett [4] proved that x is

an optimal solution to the following mathematical program:

Minimize  f(x)

Subject to  g;(x) = gj(E) j=1....J

xe S

Hence. to solve the original NLP problem. it is sufficient to find nonnegative
multipliers A (called Everett’s multipliers) such that the unconstrained min-
imum of E(x; A*) over all x € § occurs at the point x* such that

g (x*) = b, forj=1,....J (5.63)

We call this Everett’s condition.

Inequality=> Equality
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Theorem 5.8

Let A™Y and A® be nonnegative vectors such that
A = A and AD = AP forallj # i

J

If X'V and x® minimize E(x; A) given by Eq. (5.62), then

2[x"] = g[x?]

g
Eix: A) = flx) = E Ag;(x) (5.62)

i=1
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Example 5.9

Minimize f(x) = x7 + x3

Subject to g, (x) = 2x;, + x, =2
Everett’s function is given by
E(x; A) = x7 + x5 — A2x;, + x,)

We begin Everett’s method with A = A; = 0. The unconstrained minimum of
E(x; 0) occurs at the point x* = (0, 0). Since g,(x'") = 0, which is less than
2. we increase A to increase g,(x). Choose A = A, = 1. The unconstrained
minimum of E(x; 1) occurs at the point x** = (1, 3), g&?) =2 + & > 2.
Hence. A has to be decreased to get a solution that reduces the constraint
value. The remaining steps are shown in Table 5.1. Note that the value of
A in each step is simply the midpoint of the two previous A’s, since we

know that the optimal A 1s between 0 and 1. The convergence is achieved at

o—— step 8.
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Table 5.1

Everett’s Method for Example 5.9

Constraint

Step ¢ A, X0 = (X0, x{) g,(x'") Violation
1 0 x=(0,0) 0 <2
2 1 x? = (1,0.5) 2.5 =2
3 0.5 x? = (0.5, 0.25) 1.25 <2
4 0.75 x = (0.75, 0.375) 1.875 <2
5 0.88 X = (0.88, 0.44) 2.2 >2
6 0.82 x® = (0.82, 0.41) 2.05 =2
7 0.78 x7 = (0.78, 0.39) 1.95 <2
8 0.8 x® = (0.8, 0.4) 2 2

Bipartite method
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5.9 GENERALIZATION OF CONVEX FUNCTIONS

Definition: Pseudoconvex Function

A differentiable function f(x) defined on an open convex set S is pseudocon-
vex on S if and only if for all x™V, x® & §

VixM)x® — x®) = 0= f(x?) = f(xD)

Remarks

1. f(x) 1s pseudoconcave if —f(x) is pseudoconvex.

2. Every convex function is also pseudoconvex, but a pseudoconvex func-
tion may not be convex.
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Figure 5.2. Pseudoconvex function. Figure 5.3. Pseudoconcave function.

Vix®M)x® = x®) =0 = f(x@) = f(x)
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Definition: Strictly Quasi-Convex Function

A function f(x) defined on a convex set S is strictly quasi-convex on S if and
onlv if

FAXD + (1 — A)x?) < max[f(xV), f(x@)]
for all xV, x@ & § 0<A<I Fx®) #= f(x@)

Definition: Quasi-Convex Function

A function f(x) defined on a convex set S 1s quasi-convex on S if and only
if

FOAX®D + (1 — Ax?) = max[f(xD), f(xP)]

for all x'V, x®@ & § 0=A=1
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Figure 5.4. Quasi-convex function. Figure 5.5. Strictly quasi-convex function.
FAxX® + (1 — Ax?) = max[f(xD), f(x?@)] FOxX® + (1 = Ax®) < max[f(xV), f(x@)]
for all xV. x@ € § 0=\ <] for all x'V, x® € § D<aAa<l f(x™) # f(x?)
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Remarks

1. A pseudoconvex function is also a quasi-convex function. But a quasi-
convex function may not be pseudoconvex.

2. A strictly quasi-convex function need not necessarily be quasi-convex
unless f(x) i1s assumed to be continuous on the convex set of S.
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Example 5.10

forx =0
for0=x=1
— | forx = 1

flx) =

= O =

The above function is both quasi-convex and quasi-concave but neither strictly
quasi-convex nor strictly quasi-concave.

Example 5.11
fx) =x° forx € R
The above function is both strictly quasi-convex and strictly quasi-concave,

but it 1s neither quasi-convex nor quasi-concave because of the inflection point
at x = 0.
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Theorem 5.9

Let f be pseudoconvex function defined on an (open) convex set S. If Vf(x)
= (), then x minimizes f(x) over all x € S.

Theorem 5.10

Let f be a strictly quasi-convex function defined on a convex set S. Then a
local minimum of f is also a global minimum.
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Theorem 5.11 Generalization of Kuhn-Tucker Sufficient
&—— Optimality Theorem

Consider the NLP problem

Minimize  f(x)

Subject to gi(x)=0 forj=1.2.....J
h.(x) =0 fork=1.2,....K
X = (X, X o oL, X))

KTP is as follows: Find x. «, and v such that
Vi) — > u; Vg (x) — > v, Vh(x) =0
F k

u; = 0 v, unrestricted in sign
ugi(x) =0 for all j
gi(x) =0 he(x) =0

Let f(x) be pseudoconvex, g; be quasi-concave, and /i, be both quasi-convex
&— and quasi-concave. If (x. u, v) solves the KTP, then x solves the NLP problem.
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Summary

=

GO~ wD

Necessary and sufficient conditions of optimality for constrained optimization
problems

Lagrangian optimality conditions (equality and inequality constraints)
Kuhn-Tucker optimality conditions (first-order conditions, involving gradients)
Optimal => KTC : functions are differentiable + constraints qualification
KTC => Optimal :

Objective function- convex

Inequality constrains- concave

Equality constrains — linear

Saddlepoint conditions applicable — functions are not differentiable

Second order necessary conditions — functions are twice differentiable
Second order sufficient conditions — do not need convexity of functions and
linearity of equality constraints

Pseudo-convex and Quasi-convex - relaxation of convexity
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