

Traveling Repairman Problem (TRP) in All-Optical Networks (AON)

Chen Ma Jan. 09, 2015

Outlines

- TRP in Optical Networks
- TRP in All-Optical Networks
- Future Work of TRP

Scenarios

Pre-conditions:

- The repairman knows the exact position of each failure in physical network and road network.
- The repairman knows the repair time of each failure.

The damage of DVN and FVL

- Damage of DVN: the product of the number of DVN and its lasting time.
- Damage of FVL is similar with DVN.

Problem Statement

Given:

- G^R: a road network.
- G^P: a physical network.
- G^V: a set of S virtual networks.
- Π^{PV} : a basic mapping relationship of G^P and G^V .
- P: the accurate positions of failure.

Output:

The repairing path for the repairman.

Objective:

- Minimizing the damage of DVN;
- Based on Objective 1, minimizing the damage of FVL.
- Based on Objective 1 and 2, minimizing the damage of repaired time.

Auxiliary Graph

Given:

- G^A: the auxiliary graph, and the weight of each two nodes is the summary of traveling time and repair time.
- G^V: a set of S virtual networks.
- Π^{AV}: mapping relationship of G^A and G^V.
- P₀: the start node of the repairman.

Output:

A path in G^A , which obey the following rules:

- The path begins with repairman's location P_0 .
- The path travels all the auxiliary nodes in G^A.

Ojbective:

 Minimizing the total damage C of virtual networks in the whole recovery process.

Algorithms

- ILP
- Greedy Algorithm (GA)
- Dynamic Programming (DP)
- Simulated Annealing (SA)

Simulation Results - 1

Simulation Results - 2

Outlines

- TRP in Optical Networks
- TRP in All-Optical Networks
- Future Work of TRP

Failure Localization in AON (background)

- Advantages and disadvantages:
- > Passive Localization: it can deal with dual-link failure, but it is inaccurate.
- Active Localization: it can accurately locate single-link failure, but cannot deal with multi-link failure.

Publications of Localization Schemes

Research Group (Bin Wu, Pin-Han Ho, Kwan L. Yeung, Janos Tapolcai) in the University of Waterloo and the University of Hong Kong has done a lot of work about active localization schemes.

- IEEE Communications Surveys & Tutorials:2011
- IEEE/ACM Transactions on Networking: 2011*2
- JLT: 2009*2, 2011
- JOCN: 2012
- INFOCOM:2009, 2010
- Globecom: 2011

Research Group in BUPT has done some work about passive localization schemes.

- Optics Express: 2013
- OFC: 2012
- ECOC: 2012

FVL: (a-b), (b-c), (e-d), (g-h), (g-i) Suspected FPL: (B-F), (C-F), (D-E), (E-F) Actual FPL; (C-F), (D-E), (E-F)

Virtual Networks	Virtual Link	v
G_1^V	a-b	C-F-B
	b-c	B-F-E
	c-a	C-E
G_2^V	d-e	E-F-B
	e-f	B-C
	f-d	C-E
G_3^V	g-h	E-F-C
	h-i	C-D
	i-g	D-E

Pre-Conditions:

- The repairman does not know which physical links are out of work, but he knows the statements of virtual links and virtual networks.
- One time unit, the repairman can arrive one failure location, find the failure and repair it.

Damage of FVL and DVN

• The damage of DVN and FVL for the TRP in AON is similar with the first problem.

Time Unit

• However, the steps of the TRP in AON is variable.

Time Unit

Problem Statement

Input:

- G^P: an all-optical network.
- G^V: a set of S VNs.
- G^{DVN}: the set of disconnected VNs (DVN).
- Π^{VP} : a basic mapping relationship of G^P and G^V .
- E^{FVL}: the set of failed virtual links (FVL).
- E^{NVL}: the set of normal virtual links (NVL).

Output:

The repairing process of all the failed virtual links.

Objective:

- Minimizing the damage of DVN;
- Based on Objective 1, minimizing the damage of FVL.

Mapping Relationship and Fuzzy Expectation

• Fuzzy Membership (it has been published in *Optics Express*):

$$\mu_{IJ} = \sum |E_{IJ}^{FVL}|/|E^{SF}| \quad \forall e_{IJ}^P \in E_i^{SF}$$

• Fuzzy expectation of FVL:

$$B^{FVL}_{(IJ),k} = \mu_{(IJ),k} \times \sum_{(ij) \in E^{FVL}} F^{FVL}_{(ij),k} \quad \forall e^P_{IJ} \in E^{SF}$$

Fuzzy expectation of DVN:

$$B_{(IJ),k}^{DVN} = \mu_{(IJ),k} \times \sum_{G_i^V \in G^{DVN}} F_{i,k}^{DVN} \quad \forall e_{IJ}^P \in E^{SF}$$

Algorithms

- Greedy Algorithm (GA)
- Enumeration Algorithm (EA)
- Fuzzy Thresh (FZ)

Simulation Results - 1

Simulation Results - 2

Outlines

- TRP in Optical Networks
- TRP in All-Optical Networks
- Future Work of TRP

Future Works of TRP

- 1.Improve the two proposed problems.
- 2.New problems for TRP:
- Game Theory (Roy)
- Remapping (Sedef)
- Multi-Domain (Carlos)
- Energy
- 3. The algorithms for the problems.

Thank you!