

Traveling Repairman Problem with Multiple Trucks in Multiple Bases

Chen Ma Jan. 30, 2015

Scenario

TABLE I VIRTUAL MAPPING OF ILLUSTRATION

Virtual Networks	Virtual Link	
	a-b	F-B
G_1^V	b-c	B-E
1	c-a	E-F
	d-e	B-E
G_2^V	e-f	E-C
	f-d	C-B
	g-h	C-E
G_3^V	h-i	E-D
J	i-g	D-C

Pre-conditions:

- ◆Repairmen know the exactly location and type of each failure, which means they know the traveling time between any two failures and repair time of each failure.
- ◆At least 1 truck in a base, and at least 1 base in the network.
- ◆Repair time of each truck is different.

Auxiliary Graph

• Weight of each link is the traveling time.

Problem Statement

Input:

- G^P: Physical topology.
- G^A: Auxiliary graph.
- M^{AV}: Mapping of G^P and G^A.
- J: Number of trucks in each base.
- V^B: Set of base nodes.
- $T_{J,P}$: Repair time of each truck for each failure.
- Output:
- Optimal repair schedule for the disaster
- Objective:
- (1) Minimizing the damage of disconnected virtual networks (DVN).
- (2) Minimizing the damage of failed virtual links (FVL).
- (3) Minimizing the damage of failed physical links (FPL).

Repair Process

Repair Sequence:

P₂-P₄-P₁-P₃

Truck 1:

 P_2-P_1

Truck 2:

 P_4-P_3

Compared with single truck by complexity (K failures):

• Single truck: K!

• M trucks:

Sequences of failures: K!

> Candidate trucks for each failure: M

➤ Complexity: *K!*M*^K

ILP

• I have finished the constraints of ILP, and will do the coding in the next month.

Greedy Algorithm----A bad algorithm

- Main idea:
- Each truck repairs the nearest failure until all the failures repaired
- Shortage:
- It neglects the relationship of trucks, and it is not a global optimization strategy.

Help!

- 1. Improvement for the problem
- 2. Heuristic algorithms for the problem

Thank you!