

OFC 2015

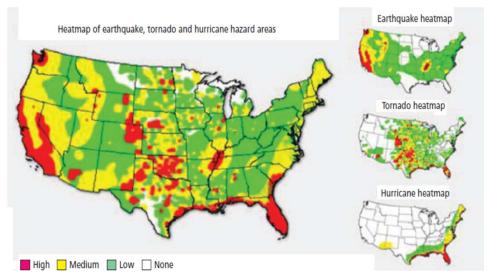
Scheme for Optical Network Recovery Schedule to Restore Virtual Networks after a Disaster

Chen Ma^{1,2}, Jie Zhang¹, Yongli Zhao¹, M. Farhan Habib²

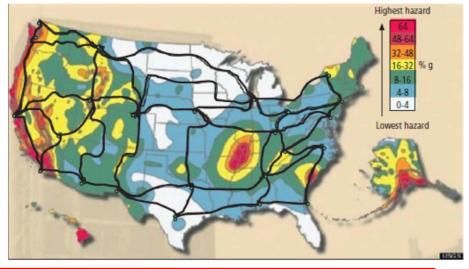
1. Beijing University of Posts and Telecommunications

2. University of California, Davis

Mar. 2015

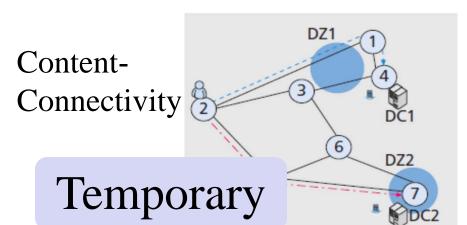


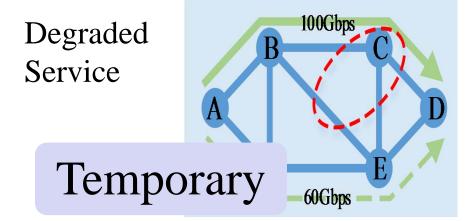
- 1 Backgrounds
- **2** Problem and Solution
- **Simulation Results**
- **4** Conclusions


Telecommunication Networks in Disasters

After disaster occurs, what should network operators do?

SS. Savas, M.F. Habib, M. Tornatore, F. Dikbiyik, and B. Mukherjee. "Network Adaptability to Disaster Disruptions by Exploiting Degraded-Service Tolerance", IEEE Communications Magazine, 2014

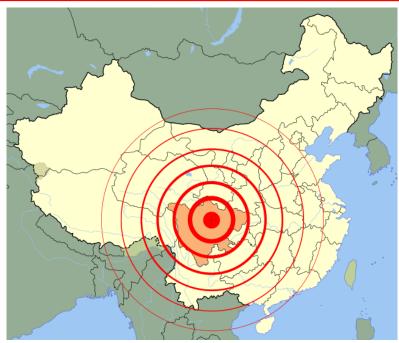




Post-Disaster Technologies

Traffic Engineering

Network Engineering



Earthquake Recovery in Wenchuan

➤ Failures in Disaster:

Numerous Failures

4,000 telecommunication offices

> Repair tean

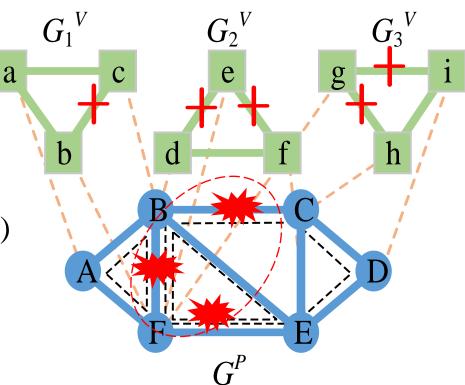
T :--:4-1 4-----

Limited Teams

Problem

How to make the recovery schedule for each team?

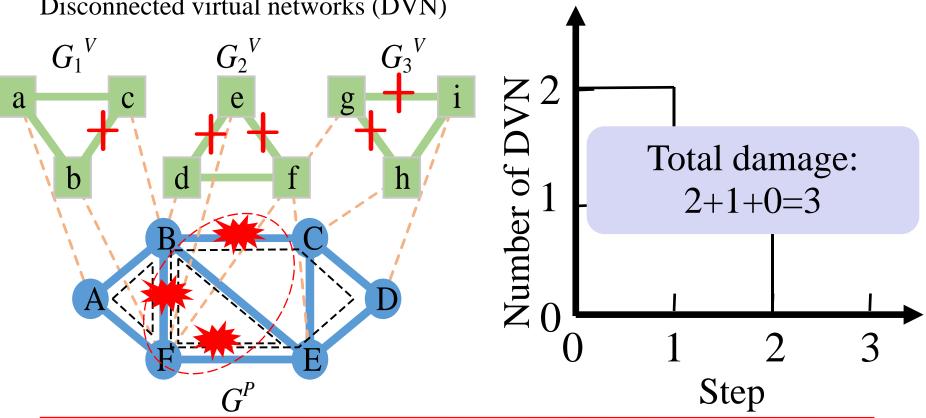
Y. Ran, "Considerations and Suggestions on Improvement of Communication Network Disaster Countermeasures after the Wenchuan Earthquake", IEEE Communication Magazine, 2011.


- **Backgrounds**
- **2** Problem and Solution
- **Simulation Results**
- **4** Conclusions

Problem Statement

- Input
 - physical networks
 - virtual networks
 - mapping relationship
 - disaster (failed components)
- Output
 - Recovery schedule

Recovery Process


Schedule: (B,F), (E,F), (B,C)

Metrics

Failed virtual links (FVL)

Un-full virtual networks (UVN)

Disconnected virtual networks (DVN)

ILP Model

> Constraints

> Statements of Physical Links

$$\sum_{k \in \{1,\dots,K\}} y_{(i,j),k} = 1 \quad \forall (i,j) \in E^D$$

$$\sum_{(i,j)\in E^D} y_{(i,j),k} = 2 \qquad \forall k \in \{1,\ldots,K\}$$

$$y_{(i,j),k} = y_{(j,i),k} \quad \forall k \in \{1,..,K\}, (i,j) \in E^D$$

$$c_{(i,j),k=1} = 0 \quad \forall k \in \{1,..,K\}, (i,j) \in E^D$$

$$c_{(i,j),k} = \sum_{k' \in \{1,..,K\}} y_{(i,j),k'} \quad \forall k \in \{2,..,K\}, (i,j) \in E^D$$

Damage of UVN

$$f_{s,k} = \bigvee_{(m,n) \in E_s^V} l_{(m,n),s,k} \quad \forall s \in \{1,..,S\}, k \in \{1,..,K\}$$

➤ Damage of DVN

$$\sum_{(m,n)\in E^D} x_{(p,q),(m,n),s,k} - \sum_{(n,m)\in E^D} x_{(p,q),(n,m),s,k} =$$

$$\begin{cases} 1 & if \ n = p \\ -1 & if \ n = q \\ 0 & otherwise \end{cases} \forall p,q,m \in V_s^V, p \neq q, (m,n) \in E_s^V, k \in \{1,..,K\}$$

$$h_{(p,q),(m,n),s,k} = x_{(p,q),(m,n),s,k} \land l_{(m,n,s,k)} \quad \forall p,q \in V_s^V, p \neq q, (m,n) \in E_s^V, k \in \{1,...,K\}$$

$$r_{s,k} = \bigvee_{p,q \in E_s^V, p \neq q, (m,n) \in E_s^V} h_{(p,q),(m,n),s,k} \ \forall s \in \{1,..,S\}, k \in \{1,..,K\}$$

➤ Damage of FVL

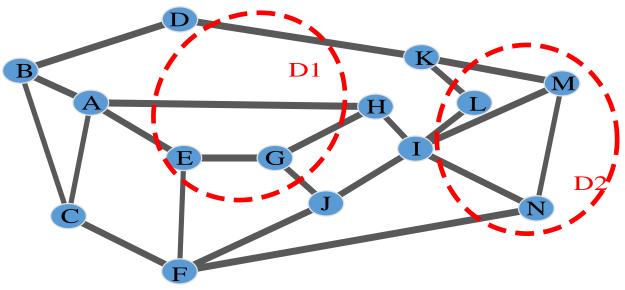
$$l_{(m,n),s,k} = \bigvee_{(i,j) \in E^D} M_{(i,j),(m,n),s} \times (1 - c_{(i,j),k}) \qquad \forall (m,n) \in E_s^V, k \in \{1,...,K\}$$

Objectives

- ➤ Minimum DVN
- $\min \sum_{k \in \{1,\dots,K\}} \sum_{s \in \{1,\dots,S\}} r_{s,k}$
- > Minimum UVN
- $\min \sum_{k \in \{1,\dots,K\}} \sum_{s \in \{1,\dots,S\}} f_{s,k}$

> Minimum FVL

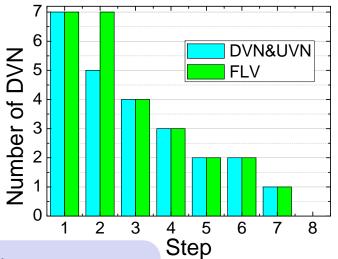
$$\min \sum_{k \in \{1,..,K\}} \sum_{s \in \{1,..,S\}} \sum_{(m,n)} l_{(m,n),s,k}$$

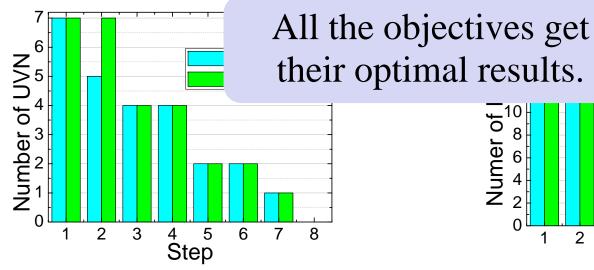


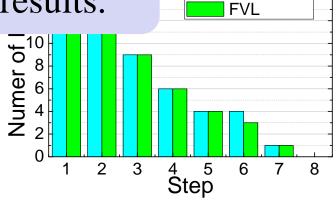
- 1 Backgrounds
- **2** Problem and Solution
- **Simulation Results**
- **4** Conclusions

Simulation

- Modified NSFNet topology
- Two disaster areas with 7 failures each
- Ten virtual networks
 - Four virtual nodes, which are randomly mapped to physical network



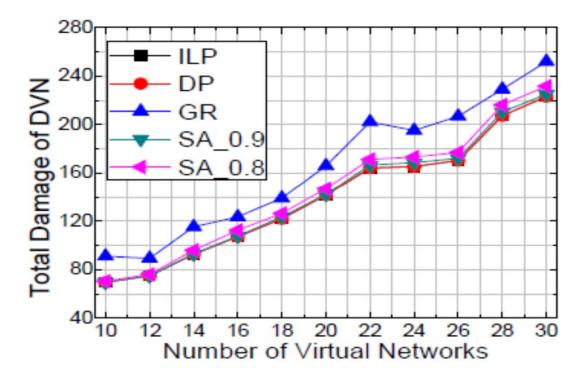

Results of OFC



Disaster Area D1

DVN	
UVN	(A,H)(D,K)(D,E)(E,F)(E,G)(G,H)(G,J)
FLV	(D,K)(A,H)(D,E)(E,F)(G,H)(E,G)(G,J)

DVN&UVN


^{*}Disconnected virtual networks (DVN) *Un-full virtual networks (UVN) *Failed virtual links (FVL)

Results after OFC

- Repair and traveling times are dynamic changed.
- Multiple algorithms (Dynamic Programming, Greedy Algorithm, Simulated Annealing) are proposed.

- 1 Backgrounds
- **2** Problem and Solution
- **Simulation Results**
- **4** Conclusions

Conclusions

- We investigated the recovery schedule of virtual networks after disaster and proposed a mathematic solution for it.
- We proposed and compared different recovery objectives, and showed that each objective can lead to its optimal result.

Work after OFC:

- Repair time and traveling time to failure locations will be dynamic changed.
- Heuristic algorithms will be introduced and compared to the problem.

OFC 2015

Thanks! Q&A