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Projects 
EU EIT Projects 
• 5GrEEn Green 5G Mobile Networks  
• 2012-2014, ≈870k€, 340k€ KTH 
• EXAM Energy Efficient Xhaul and M2M 2015, ≈100k€ KTH 
• ACTIVE Advanced ConnecTIvity platform for IoT VErtical 

segments 2016-2018 (SDN and Edge-Cloud) ≈300k€ KTH 

• Seamless DA2GC with 5G Radio Technologies in Europe 
• 2016, ≈240k€ KTH 

EU CELTIC Plus  
SooGREEN Service Oriented Optimization of Green Mobile 
Networks (Cloud-RAN, CTD, SDN, NFV) 
• 2016-2018, 750k€ KTH 



Mobile Communications Power Consumption  
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Based on: ETSI RRS_05024, NSN, GreenTouch (First presented May 2010, Greentouch presentation at 2012 @ Green Telecom and IT Workshop)   



Motivation 
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•  What is the consequence? 
•  Energy Consumption: X2 every 5 years 

•  Densification + New roll out 

•  Unit energy cost: X3 in 7 years! 

For Operators For Governments 

Low energy consumption is key!! 

Prepared by Sibel Tombaz, KTH. 



5G Challenges and Energy Consumption 

! 5G Challenges: 
– Thousand-fold traffic increase 
– Hundreds of billions of devices 
– Diverse requirements (latency, reliability, spectrum) etc. 
– Affordable, sustainable, and feasible 

! 5GrEEn target: Factor of 10 reduction of energy consumption  
versus today and fulfilling all other requirements! 

– EARTH: Factor of 4 reduction vs 2012 baseline 
– GreenTouch: Factor of 10 reduction vs 2010 baseline 

“>100
0x” 



Main areas for improving  
energy Performance 

“Reduce overall energy consumption  
in case of excess capacity” 

Network management power 

load 

“Design energy efficient systems  
from the start” 

Standardization power 

load 

“State of the art energy lean  
hardware and software” 

Product Improvements power 

load 
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Current Network: 
Traffic Measurements 

(Central parts of Major European Capital City, 2012) 

! High traffic is an exception 
!  Median HS traffic is ≈ 50 kbit/s 
!  Median 3G CS voice traffic is ≈ 0.2 Erlang 
 

“But not the one I want to use when 
I want to use it” 

“Most parking spaces are unused 
most of the time” 

Prepared by Pål Frenger, Ericsson AB. 



Base Station  
Energy performance 

RF output power 

Full load 

Sleep mode 

Active 

BS power  
usage 

Ref. Symbols, Sync, Sys Info 

Traditional focus on 
high capacity, peak 
data rates and delay 

Energy performance 
requires addressing low 
traffic cases 

Prepared by Pål Frenger, Ericsson AB. 



Base Station  
Energy performance 

RF output power 

Full load 

Sleep mode 

Active 

BS power  
usage 

Ref. Symbols, Sync, Sys Info 

D
TX

 duration 

CO2 footprint 

Type of power 
solution that is 
feasible (e.g. solar or 
diesel) 

Feasibility of 
providing low cost 
wide area coverage 

OPEX Cost: 
Electricity bill 

CAPEX Cost: Size 
of solar panels 
and battery 
backup 

Prepared by Pål Frenger, Ericsson AB. 



Focus areas & potential solutions: 
System architecture 

! From always on… to always available! 
 
! Logical decoupling of system plane and 
user plane 
! Cells are dynamically 

configured to support 
active users/devices 

! Enables BS DTX/DRX 
and high gain  
beamforming 
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Prepared by Magnus Olsson, Ericsson AB. 



EE When not transmitting data 
Ultra-thin 5G-NX Control Plane  

 
Minimize Broadcast 

Common  
System 

 Information 

Node Specific  
System Information 

Access Information 

Communicated after initial system access 
Communicated after initial node access 

Separate active and idle mode mobility 

Magnus Olsson,  Pål Frenger, Ericsson AB. 



EE When transmitting data: Operation 
 Very Large MIMO 

! Why: 
! Focus emitted energy to where the terminals are located 
!  Improve data rates (more sleep mode) 
! Reduce interference (less tx-power required) 

Source: E. G. Larsson et. al. “Massive MIMO for Next Generation Wireless Systems” 

Magnus Olsson,  Pål Frenger, Ericsson AB. 



When Transmitting Data  
- Operation - 

•  How much energy we can save at low load scenarios via traffic adaptive 
macro(~hour)- and micro-level(~ms) sleep techniques? 

14 



Outline 

! BS Densification Cell Dtx and Small Cell Offload 

! Joint BW and Power optimization with QoS Guarantee  

! Energy Efficient Load Adaptation in Massive MIMO Systems 
(optimization of number of antennas per BS to maximize EE over the 
day) 

! Network Sharing Energy Efficiency Benefits 



KTH ROYAL INSTITUTE 
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1/4 Energy Savings with BS Densification, 
Cell DTX and Small Cell Offloading 



Solution:  
Hardware and software upgrade to enable cell DTX at BS side. 

Cell DTX:  Switch off the PA during the TTI’s that are fully devoted to data 
transmission when there is no traffic. 

Switch off the PA (microsecond level)

 

Energy saving 

Traffic-Adaptive Network Operation 
Micro Sleep – Cell DTX 



Cell DTX in Small Cell Deployments 1/6 

Q: 
! How much Power we can save by Cell DTX   
! How much traffic can we offload from macro layer? 
! Can we save power by small cell offloading ? 

  
Important: Calculation of “Cell Activity Factor” by considering interference 
! Given cell traffic " interference " data rates " transmitter activity " 

interference " … 
𝜼=𝑓(𝜼) 



Cell Activity 

! Define ”offered load” as a function of N-active-users, file size over an 
ovservation period / Bandwidth, Max-SE 
 
Solve the fixed point 
To calculate the Cell Activity 



Cell DTX Area Power Savings 

! When we average power consumption expression over 
19 cells and changing offered traffic in 24 hours, we get: 

! Plotting the Pmin at optimum radius against delta gives the second figure. 
!  If δ = 0.5, we save 1/3 power compared to δ = 1 (no DTX). 
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R* for Case 2, w ithout Cell DTX

R* for Case 2, w ith Cell DTX

R* for Case 1, w ith Cell DTX

Saving due to Cell DTX
for a given deployment

Additonal gain due to
incorporation of  Cell DTX 
w ith  deployment

•  Cell DTX brings striking energy 
saving (from blue to green bar) for a 
given network deployment. 

 
•  However, additional 42 percent 

saving is achievable  by designing 
the network under the assumption 
that cells can be put into DTX mode 
during idle periods.  

Cell DTX Area Power Savings 



Cell DTX in Small Cell Deployments 

! System model: 
! Macro cell ISD: 500m 
! Femto cell ISD: 50m 
! Offloading femtos deployed 

where users receive worst rate. 
! Macro TX power: 20W 
! Femto TX power: 0.05W 

! No cell-DTX at femto cells. 
 



Cell DTX in Small Cell Deployments 

! Adding femtos reduce the time-load of the macro BSs. 

!  If we consider area power consumption in second figure: 
! Offloading saves power when macro is very loaded. 
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2/4 Joint BW and Power Allocation with QoS 
Guarantee 

 



Problem description 

25 



Problem description 
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QoS: 
•  Prmin = –90dBm 
•  Rmin = 500kbps 



Problem description 
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min ∑ 
 

s.t. QoS satisfied: 
•  Pr > Prmin 
•  R > Rmin 

 



Solution approach 

! Estimate performance of a large system involving an optimization problem. 
# Perform stochastic simulations. 
# Solve optimization problem using IBM CPLEX. 

! Trouble: R = W log2(1+SINR) # Nonlinear. 

! So, perform resource allocation in stages: 
1.  Determine BS-UE assignment to minimize power consumption while 

guaranteeing Prmin 
! MIQP # solvable using CPLEX. 

2.  Allocate BW to UEs. 
! Several possible approaches (equal, proportional fair) 

3.  Perform power control to improve SINR, thus Rate. 
! Also reduces power consumption. 

4.  If all QoS requirements not satisfied, repeat from step 1 using higher 
Prmin requirement. 



 
Minimize total power consumption. 
 
Each BS serves at most NPRB UEs. 
 
All UEs are served. 
 
Each UE is served by only 1 BS. 
 
A covered UE has Pr > Pmin 
 

A served UE is covered. 
If a BS is serving any UE, it is on. 
Sum of power allocated by a BS does not 
exceed BS’s power budget. 

BS-UE assignment 

“Energy efficient adaptive cellular network configuration with QoS guarantee” 
•  Pierpaolo Piunti, Cicek Cavdar, Simone Morosi, Kaleab Ejigayehu Teka, Enrico Del Re, Jens Zander. 
 ICC 2015 in London. 



Results 

! Total power consumption vs load 



Results 

! On rate of convergence of proposed algorithm 



Discrete spectral efficiency set 

Source: 
"Essentials of LTE 
and LTE-A" A. 
Ghosh and R. 
Ratasuk. 
P. 98, table 4.7 
"The CQI table and 
reference SINR 
requirements" 

We use a discrete 
rate set to better 
represent reality, 
e.g. an LTE 
system. 



Bandwidth-TX power tradeoff 
for given rate requirement 

Discrete rate set 



More BW ≠ Less Tx Power 

For the propagation and 
interference experienced 
by this particular UE, we 
can reduce Tx power by 
allocating 2 PRBs 
(400kHz) instead of 1 
PRB (200kHz).  
 
But BW-power 
relationship is not 
monotonic. 
 
We need more Tx power 
to satisfy same rate 
requirement using 3 
PRBs. 



Impact of UE sensitivity 
For the same UE, 
if 𝑝↓𝑚𝑖𝑛  is 
increased 
from -120dBm to 
-110dBm 
we don’t gain 
anything by 
allocating more 
BW. 
 
Note: Even though 
excess BW may 
not always reduce 
Tx power, it can still 
be used to serve 
more UEs and 
switch off BSs. 



Impact of rate requirement 

If we increase rate 
requirement, 
e.g. from 250kbps to 
1000kbps, 
BW-Tx power tradeoff 
becomes more 
apparent. 
 
Whether there is a 
clear tradeoff depends 
on the relationship 
between several 
parameters listed 
here. 



Performance of BW and power allocation 
algo. with minimum rate constraint 

Baseline: Strongest 
signal association, 
all BS are on. 

In scenarios we studied, 
joint BW-power allocation 
algorithm typically uses the 
excess bw to switch off BSs 
rather than reduce TX power. 
In the figure, only 2 BS are 
on. 

Example System: 7BS, 30UEs, 15 
PRBs, Pon= 130W, Poff=13 W,  
a= 4.7 



KTH ROYAL INSTITUTE 
OF TECHNOLOGY 

3/4 Double Auction Based Energy Market for 
Network Sharing 

 
Aftab Hossain, Cicek Cavdar, Riku Jantti, ICC 2015, London 
 



Motivation 
o  Network Capacity demand  is growing exponentially.  

o  Around 90% of total energy is wasted by the BSs to ensure coverage.  

o  Small cell or offloading to wi-fi  boosts capacity only. 

o  Daily network load maximums are  2-10 times higher than the daily 

minimums. 

o  Load demands among the operators at a given time serving the same 

area varies significantly. 

o  Multi-operator capacity sharing has the potential to reduce energy 

consumption significantly.  



Network Sharing Energy market for MNOs 
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NO = 2

NO = 3

NO = 4

NO = 5

Operators buy and sell 
capacity in order to 
maximize their profit and 
t h e c l e a r i n g h o u s e 
minimize overall energy 
consumption. 
 
Each operator submit 
both the offer to buy and 
cell capacity, i.e., ask 
and bid. Fig: Bid and ask generation 

Fig: Energy saving from total offloading by DA 

!  Bid to offload each unit of load is the amount of energy 
that can be saved by offloading that unit  

!  Ask for 1 unit of load  is the energy cost for accepting 1 
unit of extra load.  

!  Clearinghouse makes the allocation based on the 
criterion to minimize total energy consumption and also 
determines the trading price by PMD protocol  

Fig: Energy saving from partial  offloading by DA Low load: 50-80 % Energy Saving by total offloading 
High Load: 17 – 2 % Energy Saving by partial offloading 
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4/4 Energy efficient load-adaptive  
massive MIMO 

M. M. Aftab Hossain, Cicek Cavdar, Emil Bjornson, Riku Jantti 
Globecom 2015 

Energy Efficient 
Xhaul and M2M 



Dynamic  adaptation  of  antennas

16-01-23 42 
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Main contribution is 
how to adapt  the # of 
antennas to the load 
dynamically 

On 

Off 



Massive  MIMO  and  EE

 
!  ”Each BS uses  hundreds of antennas to simultaneously serve tens of user 

equipments (UEs) on the same time-frequency resource.” 
!  Increasing  the number of antenna elements increases capacity.  How does 

energy consumption scales with the number of antennas?  
!   i.e. is it possible to adjust the number of antenna in order to improve energy 

efficiency at different network load? 
 

43 



Energy  ef:iciency  optimization

44

Energy efficiency maximization

6.12.2015
5

� The EE maximization problem for cell 𝑐 for a particular load 

maximize:
𝑴𝒄

𝐾𝑐𝑅𝑐 (𝐾𝑐, 𝑀𝑐, 𝑀𝑑 𝑑≠𝑐)
𝑃𝑐𝑡𝑜𝑡 𝐾𝑐, 𝑀𝑐

Subject to 𝑀𝑐 ≥ 𝐾𝑐 + 1

� EE
o the number of bits transferred per Joule of energy 
o the ratio of average sum rate (in bit/second) and the average total 

power consumption (in Joule/s)
o Energy  Efficiency (EE) = Average sum rate

Power Consumption

= 𝐾𝑐𝑅𝑐 (𝐾𝑐, 𝑀𝑐, 𝑀𝑑 𝑑≠𝑐)
𝑃𝑐𝑡𝑜𝑡 𝐾𝑐, 𝑀𝑐



Problem  formulation

45

Problem formulation

6.12.2015
6

� The main problem formulation for BS c can be rewritten as

maximize
𝕄𝑐

 
ℎ=1

𝐻

 
𝑛=1

𝑚

𝜋𝑐 ℎ, 𝑛
𝑛𝑅𝑐(𝑛, 𝑀𝑐, 𝑀𝑑 𝑑≠𝑐 )
𝑃𝑐𝑡𝑜𝑡 𝑛, 𝑀𝑐

Subject to  𝑀𝑐
(ℎ) 𝑛 ≥ 𝑛 + 1,

Where 𝑅𝑐(𝐾𝑐, 𝑀𝑐, 𝑀𝑑 𝑑≠𝑐 ) is the average rate per user when there are n users in 
the cell and 𝕄𝑐 = [ℳ𝑐

(1) ℳ𝑐
(1) . . . ℳ𝑐

(𝐻)] where ℳ𝑐
(ℎ) is the vector that gives the 

optimum number of antennas in cell c during the time interval h.

o In order to capture the  daily load variation, we model each BS as an
M/G/m/m state-dependent queue

o Denoting the steady state probability of the BS c serving n number of 
users, , i.e., Pr[𝐾𝑐 = 𝑛] during time interval h, by 𝜋𝑐(ℎ, 𝑛)



System  model
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System model
Assumptions: 
o BS obtains perfect CSI for its users and
o applies zero forcing precoding i.e. intracell interference is calncelled out.
o power allocation is adapted so that each user gets same rate
o total average transmit power of the BS is fixed.

User Rate (average):      

R𝑐 = B 1 − K𝑚𝑎𝑥
𝑇𝑐

log2 1+
𝑝M𝑐
K𝑐
(𝐌𝒄 −𝐊𝒄 )

Λ𝑐𝑐 𝜎2+ 𝑑≠𝑐 Λ𝑐𝑑𝑝M𝑑)

B = bandwdith, 
𝑇𝑐 = coherence time  and 
K𝑚𝑎𝑥= maximum number of  users in any cell
Λcc = the channel variance from the serving BS, 
 𝑑≠𝑐 Λ𝑐𝑑𝑝M𝑑= the avearge inter-cell interference power normalized by Λcc, 
K𝑐= number of simultaneously served users
M𝑐=Number of active antennas

Array gain

6.12.2015
7



Traf:ic  Model  

47 

Traffic Model
� We model the massive MIMO system as an 

𝑀/𝐺/𝑚/𝑚 state-dependent queue where
maximum𝑚 numbers of users are served at a 
time.

� The steady state probabiliy distribution

𝜋𝑐 𝑛 =
𝜆𝑠

𝑅𝑐(1)

𝑛

𝑛!𝑓(𝑛)(𝑓 𝑛−1 …..𝑓(1)
𝜋𝑐 0 , 𝑛 = 1,2, …𝑚

where 𝜋𝑐−1(0) = 1 +  𝑖=1𝑚
𝜆𝜎
𝑅𝑐(1)

𝑖

𝑖!𝑓(𝑖)𝑓 𝑖−1 …..𝑓(1)

𝑅𝑐(1)= the rate when there is only one user in the 
system and 𝑓 𝑛 = 𝑅𝑐(𝑛)

𝑅𝑐(1)
, 𝑅𝑐(𝑛) is the average rate  if  

there are n number of users in the system, 

6.12.2015
8

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

Number of users

pd
f

 

 
100% load
50% load



Traf:ic  model-‐2

48 

Traffic model-2

� we choose m =𝐾𝑚𝑎𝑥, the number of users
being served simultaneously gives global 
optimum EE and load carried by these
number of users is mapped to the highest
traffic demand of the DLP.  

� For other network loads, we find the 
corresponding average number of users, 
e.g.,  for x% load 𝜆𝑥 =

𝑥
100

∗ 𝜆𝑚𝑎𝑥

� At 100% load we allow at most  2% 
blocking i.e. 𝜋(𝐾𝑚𝑎𝑥) = 0.02. 

6.12.2015
9



Power  consumption    model

49 

Power consumption model

The baseband processing  power consumption  is a nonlinear function of  
𝐾𝑐 but a linear function of 𝑀𝑐 and can be summarized as

𝑃𝐵𝐵 𝑀𝑐, 𝐾𝑐 = 𝐶𝑜𝐵𝐵 +𝑀𝑐𝐶1𝐵𝐵

PA consumption: 𝐶1𝑃𝐴 = 𝑃𝑃𝐴 𝑝 = 1
𝜂

𝑝𝑃𝑚𝑎𝑥,𝑃𝐴

𝑃total = 𝑀𝑐𝑃𝑃𝐴 𝑝 + 𝑃𝐵𝐵(𝑀𝑐, 𝐾𝑐) + 𝑃𝑂𝑡ℎ

where 𝐶0 = 𝐶0𝐵𝐵 + 𝑃𝑂𝑡ℎ , 𝐶1 = 𝐶1𝑃𝐴 + 𝐶1𝐵𝐵, 𝑃𝑚𝑎𝑥,𝑃𝐴 = maximum transmit power of 
the PA,  𝜂= maximum efficiency at 𝑝𝑚𝑎𝑥,𝑃𝐴,       𝑎 ≈ 0.0082, a PA dependent parameter 

𝑷𝒕𝒐𝒕𝒂𝒍 ≈ 𝑪𝟎 +𝑪𝟏𝑴𝒄

6.12.2015
10



EE  maximization  game
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EE maximization game
� The objective function when the BS servers 𝑛 users can be broadly written as 

𝐸𝑐 =
𝑛 𝛽 log(1 − 𝑛𝑀𝑐𝛾𝑐,1 + 𝛾𝑐,1𝑀𝑐2)

𝐶0 + 𝐶1𝑀𝑐

where 𝛾𝑐,1 =
1
𝑛𝑝

𝐺𝑐𝑐𝜎2+ 𝑑≠𝑐 𝑝𝐺𝑐𝑑𝑀𝑑
, is the SINR when using a single antenna.

� We define the EE maximization game, 𝓖(𝓚, 𝓢; 𝓔) where 
o the players are the BSs, 
o 𝑆 = 𝑆1 × 𝑆2 × . . . × 𝑆𝐶 is the strategy space, i.e., space of number of active antennas, 
o 𝓔 = 𝐸𝑐(𝓜𝑐,𝐌−𝑐) the utility of the players
𝑆𝑐 is a function of the number of antennas used by the interfering BSs, 𝐌−𝑐
𝑆𝑐(𝓜𝑐 n : n + 1 ≤𝓜c ≤ 𝑀𝑚𝑎𝑥, ∀𝑛 ∈ 𝓤𝑐 where 𝓤𝑐 = {1, 2, . . . , 𝑚}

6.12.2015
11



The  best  response  iteration  and  convergence

$  In  game  theory,  the  best  response  is  the  strategy  (or  strategies)  
which  produces  the  most  favorable  outcome  for  a  player,  taking  
other  players’  strategies  as  given.  

$  The  use  of  best  response  strategy  gives  rise  to  dynamic  system  of  the  
form

𝓜↓𝒄 = argmin↓𝓜↓𝒄 ϵ𝑆 ↓𝑐(𝑀↓−𝑪 ) 𝐸↓𝑐 ( 𝓜↓𝒄 ,   𝐌↓−𝑐 )

$    The  convergence  of    best  response  iteration  to  a  unique  Nash  
equilibrium  has  been  proved  by  showing  that  this  EE  maximization    
problem  can  be  modeled  as  a    S-‐modular  game.
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The best response iteration and convergence

� In game theory, the best response is the strategy (or strategies) 
which produces the most favorable outcome for a player, taking other 
players’ strategies as given. 

� The use of best response strategy gives rise to dynamic system of the 
form

𝓜𝒄 = argmin𝓜𝒄ϵ𝑆𝑐 𝑀−𝑪
𝐸𝑐(𝓜𝒄, 𝐌−𝑐)

� The convergence of  best response iteration to a unique Nash 
equilibrium has been proved by showing that this EE maximization  
problem can be modeled as a  S-modular game.

6.12.2015
12



Algorithm

52 



Simulation Parameters 

53 

Parameter Value 

Cell radius:dmax 
Minimum distance, dmin 
Transmission Bandwidth, B 
PA maximum efficiency,  
BS Fixed power :P0th 
Channel coherence intervals:TC 
Local oscillator Power:PSYN 
Power required to run the circuit comp. at a BS:PBS 
Total noise power: B.σ2 

Power required for coding of data signals:   
Power required for decoding of data signals: PDEC 
Computational Computation efficiency at LBS 
 

500 m 
35 m 
20 MHz 
80% 
18 W 
 12600 symbols 
 2 W 
1 W 
-96 dBm 
0:1 W/(Gbit/s) 
0:8 W/(Gbit/s) 
12:8 Gflops/W  
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Interplay between 𝑀𝑐 and 𝐾𝑐

6.12.2015
15

o The relation between 𝑀𝑐 and 𝐾𝑐 is 
quite linear for different loads.

o Ratio between 𝑀𝑐 and 𝐾𝑐 is quite
high when BS serves only few
users which is around 2 at higher
user states.

o The average number of antennas
used at different loads vary mainly
due to the probability distribution
of the users. 

o When serving few users, an additional antenna does not consume much energy
compared to fixed consumption but contributes singnificantly to increase EE due to 
higher array gain (𝑀𝑐 –𝐾𝑐)
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o The relation between 𝑀𝑐 and 𝐾𝑐 is 
quite linear for different loads.

o Ratio between 𝑀𝑐 and 𝐾𝑐 is quite
high when BS serves only few
users which is around 2 at higher
user states.

o The average number of antennas
used at different loads vary mainly
due to the probability distribution
of the users. 

o When serving few users, an additional antenna does not consume much energy
compared to fixed consumption but contributes singnificantly to increase EE due to 
higher array gain (𝑀𝑐 –𝐾𝑐)

Interplay  between  Mc  and  Kc



Energy  ef:iciency  improvement  
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o  EE  increases  with  the  increase  in  
load  for  both  the  reference  case  
and  our  scheme  for  both  TPA  
and  ET-‐PA.

o  Our  scheme  attains  signi:icantly  
higher  EE  compared  to  the  
reference  case  at  low  load.

o  EE  gain  keeps  decreasing  with  
the  increase  in  load.

o  At  the  peak  load,  the  gain  is  insigni:icant  as  the  probability  of  having  small  
number  of  users  which  allows  EE  improvement  by  reducing  antennas  is  
very  low.



EE  and  user  rate  tradeoff

o At  very  low  load  the  EE  has  
been  increased  with  
around  300%  at  the  cost  of  
around  50%  reduction  of  
the  average  user  data  rate.

o With  the  increase  of  load  in  
the  system,  both  the  gain  in  
EE  and  loss  of  user  rate  get  
reduced.  
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o  Over  the  24  hour  operation,  EE  has  been  found  to  be  improved  around  
24%  at  the  cost  of  around  13%  reduction  of  user  rate.



Thank you! 
cavdar@kth.se 
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