

Green 5G Mobile Networks

Cicek Cavdar

15 January 2016 UC-Davis Friday Semiar organized by Networks Lab

KTH-Royal Institute of Technology

RSLab

Wireless@KTH Research Center

- Leader: Prof. Jens Zander
- Staff of 21 includes, 6 PhD students and 15 senior researchers

EU EIT Projects 5GrEEn Green 5G Mobile Networks 2012-2014, ≈870k€, 340k€ KTH EXAM Energy Efficient Xhaul and M2M 2015, ≈100k€ KTH ACTIVE Advanced ConnecTlvity platform for IoT VErtical segments 2016-2018 (SDN and Edge-Cloud) ≈300k€ KTH Seamless DA2GC with 5G Radio Technologies in Europe 2016, ≈240k€ KTH

EU CELTIC Plus

SooGREEN Service Oriented Optimization of Green Mobile Networks (Cloud-RAN, CTD, SDN, NFV) 2016-2018, 750k€ KTH

Mobile Communications Power Consumption

Motivation

• What is the consequence?

- Energy Consumption: X2 every 5 years
 - Densification + New roll out
- Unit energy cost: X3 in 7 years!

Low energy consumption is key!!

For Operators

•

For Governments

5G Challenges:

- Thousand-fold traffic increase
- -Hundreds of billions of devices
- -Diverse requirements (latency, reliability, spectrum) etc.
- -Affordable, sustainable, and feasible

- 5GrEEn target: Factor of 10 reduction of energy consumption versus today <u>and</u> fulfilling all other requirements!
 - -EARTH: Factor of 4 reduction vs 2012 baseline

-GreenTouch: Factor of 10 reduction vs 2010 baseline

Main areas for improving energy Performance

Current Network:

Traffic Measurements

"Most parking spaces are unused most of the time"

But not the one I want to use when I want to use it"

Prepared by Pål Frenger, Ericsson AB.

Base Station Energy performance

Prepared by Pål Frenger, Ericsson AB.

Focus areas & potential solutions: System architecture

From always on... to always available!

- Logical decoupling of system plane and user plane
 - Cells are dynamically configured to support active users/devices
 - Enables BS DTX/DRX and high gain beamforming

EE When not transmitting data Ultra-thin 5G-NX Control Plane

Minimize Broadcast

Separate active and idle mode mobility

Magnus Olsson, Pål Frenger, Ericsson AB.

EE When transmitting data: Operation Very Large MIMO

- Why:
 - Focus emitted energy to where the terminals are located
 - Improve data rates (more sleep mode)
 - Reduce interference (less tx-power required)

Magnus Olsson, Pål Frenger, Ericsson AB.

Source: E. G. Larsson et. al. "Massive MIMO for Next Generation Wireless Systems"

When Transmitting Data - Operation -

 How much energy we can save at low load scenarios via traffic adaptive macro(~hour)- and micro-level(~ms) sleep techniques?

- BS Densification Cell Dtx and Small Cell Offload
- Joint BW and Power optimization with QoS Guarantee
- Energy Efficient Load Adaptation in Massive MIMO Systems (optimization of number of antennas per BS to maximize EE over the day)
- Network Sharing Energy Efficiency Benefits

1/4 Energy Savings with BS Densification, Cell DTX and Small Cell Offloading

Traffic-Adaptive Network Operation Micro Sleep – Cell DTX

Solution:

Hardware and software upgrade to enable cell DTX at BS side.

Cell DTX: Switch off the PA during the TTI's that are fully devoted to data transmission when there is no traffic.

Cell DTX in Small Cell Deployments 1/6

Q:

- How much Power we can save by Cell DTX
- How much traffic can we offload from macro layer?
- Can we save power by small cell offloading ?

Important: Calculation of "Cell Activity Factor" by considering interference

Given cell traffic → interference → data rates → transmitter activity → interference → …

 $\eta = f(\eta)$

 Define "offered load" as a function of N-active-users, file size over an ovservation period / Bandwidth, Max-SE

Solve the fixed point To calculate the Cell Activity

 When we average power consumption expression over 19 cells and changing offered traffic in 24 hours, we get:

- Plotting the Pmin at optimum radius against delta gives the second figure.
- If δ = 0.5, we save 1/3 power compared to δ = 1 (no DTX).

Cell DTX Area Power Savings

- Cell DTX brings striking energy saving (from blue to green bar) for a given network deployment.
- However, additional <u>42 percent</u> saving is achievable by designing the network under the assumption that cells can be put into DTX mode during idle periods.

Cell DTX in Small Cell Deployments

- System model:
 - Macro cell ISD: 500m
 - Femto cell ISD: 50m
 - Offloading femtos deployed where users receive worst rate.
 - Macro TX power: 20W
 - Femto TX power: 0.05W
 - No cell-DTX at femto cells.

Adding femtos reduce the time-load of the macro BSs.

- If we consider area power consumption in second figure:
- Offloading saves power when macro is very loaded.

KTH ROYAL INSTITUTE OF TECHNOLOGY

2/4 Joint BW and Power Allocation with QoS Guarantee

Problem description

Problem description

- Estimate performance of a large system involving an optimization problem.
 - ➔ Perform stochastic simulations.
 - → Solve optimization problem using IBM CPLEX.
- Trouble: $R = W \log_2(1+SINR) \rightarrow Nonlinear.$
- So, perform resource allocation in stages:
 - 1. Determine BS-UE assignment to minimize power consumption while guaranteeing Pr_{min}
 - MIQP \rightarrow solvable using CPLEX.
 - 2. Allocate BW to UEs.
 - Several possible approaches (equal, proportional fair)
 - 3. Perform power control to improve SINR, thus Rate.
 - Also reduces power consumption.
 - 4. If all QoS requirements not satisfied, repeat from step 1 using higher Pr_{min} requirement.

$$\begin{array}{l|l} \textbf{BS-UE assignment} \\ \underset{\pi,x,\zeta}{\operatorname{arg\,in}} \sum_{i=1}^{N} [(a \sum_{j=1}^{M} \pi_{ij} x_{ij} + P_0)\zeta_i + (1 - \zeta_i)P_{sleep}] \\ \text{Minimize total power consumption.} \\ \text{s.t.} & \sum_{j=1}^{M} x_{ij} \leq N_p \quad \forall i \in \mathcal{B} \\ \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} = M \\ & \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} = M \\ & \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} = 1 \quad \forall i \in \mathcal{U} \\ & \sum_{i=1}^{N} x_{ij} = 1 \quad \forall i \in \mathcal{U} \\ & c_{ij} \leq \frac{\pi_{ij} \cdot \sigma_{ij}}{P_{MINj}} \quad \forall i \in \mathcal{B} \quad \forall j \in \mathcal{U} \\ & c_{ij} - x_{ij} \geq 0 \quad \forall i \in \mathcal{B} \quad \forall j \in \mathcal{U} \\ & \zeta_i \geq x_{ij} \quad \forall j \in \mathcal{U} \quad \forall i \in \mathcal{B} \\ & \sum_{j=1}^{M} \pi_{ij} \leq P_{MAX} \quad \forall i \in \mathcal{B} \end{array} \qquad \begin{array}{l} \text{Aserved UE is covered.} \\ \text{If a BS is serving any UE, it is on.} \\ \text{Sum of power allocated by a BS does not exceed BS's power budget.} \end{array}$$

Energy efficient adaptive cellular network configuration with QoS guarantee"
Pierpaolo Piunti, Cicek Cavdar, Simone Morosi, Kaleab Ejigayehu Teka, Enrico Del Re, Jens Zander. ICC 2015 in London.

Total power consumption vs load

On rate of convergence of proposed algorithm

Discrete spectral efficiency set

We use a discrete rate set to better represent reality, e.g. an LTE system.

Source: "Essentials of LTE and LTE-A" A. Ghosh and R. Ratasuk. P. 98, table 4.7 "The CQI table and reference SINR requirements"

Bandwidth-TX power tradeoff for given rate requirement

More BW ≠ Less Tx Power

For the propagation and interference experienced by this particular UE, we can reduce Tx power by allocating 2 PRBs (400kHz) instead of 1 PRB (200kHz).

But BW-power relationship is not monotonic.

10.00

6.00

16.00

2.0e-1

3.0e-1

250.00

200.00

-120.0

We need more Tx power to satisfy same rate requirement using 3 PRBs.

Impact of UE sensitivity

For the same UE, if $p \downarrow min$ is increased from -120dBm to -110dBm we don't gain anything by allocating more BW.

Note: Even though excess BW may not always reduce Tx power, it can still be used to serve more UEs and switch off BSs.

Impact of rate requirement

If we increase rate requirement, e.g. from 250kbps to 1000kbps, BW-Tx power tradeoff becomes more apparent.

Whether there is a clear tradeoff depends on the relationship between several parameters listed here.

Performance of BW and power allocation algo. with minimum rate constraint

In scenarios we studied, joint BW-power allocation algorithm typically uses the excess bw to switch off BSs rather than reduce TX power. In the figure, only 2 BS are on.

3/4 Double Auction Based Energy Market for Network Sharing

Aftab Hossain, Cicek Cavdar, Riku Jantti, ICC 2015, London

Motivation

- Network Capacity demand is growing exponentially.
- $_{\odot}$ Around 90% of total energy is wasted by the BSs to ensure coverage.
- Small cell or offloading to wi-fi boosts capacity only.
- Daily network load maximums are 2-10 times higher than the daily minimums.
- Load demands among the operators at a given time serving the same area varies significantly.
- Multi-operator capacity sharing has the potential to reduce energy consumption significantly.

Network Sharing Energy market for MNOs

Operators buy and sell capacity in order to maximize their profit and the clearinghouse minimize overall energy consumption.

Each operator submit both the offer to buy and cell capacity, i.e., ask and bid.

Fig: Energy saving from total offloading by DA

TABLE III ENERGY SAVING AT HIGH LOAD 2

Operators load					Saving(%)
99	99	99	99	70	17
99	99	99	90	80	13
99	99	90	90	80	10
99	99	90	80	70	12
95	80	80	70	70	2
90	80	80	70	70	1
90	80	70	60	60	12
80	80	80	70	70	9

Fig: Energy saving from partial offloading by DA

- Bid to offload each unit of load is the amount of energy that can be saved by offloading that unit
- Ask for 1 unit of load is the energy cost for accepting 1 unit of extra load.
- Clearinghouse makes the allocation based on the criterion to minimize total energy consumption and also determines the trading price by PMD protocol

Low load: 50-80 % Energy Saving by total offloading High Load: 17 – 2 % Energy Saving by partial offloading

Energy Efficient Xhaul and M2M

4/4 Energy efficient load-adaptive massive MIMO

M. M. Aftab Hossain, Cicek Cavdar, Emil Bjornson, Riku Jantti Globecom 2015

Dynamic adaptation of antennas

Massive MIMO and EE

- "Each BS uses hundreds of antennas to simultaneously serve tens of user equipments (UEs) on the same time-frequency resource."
- Increasing the number of antenna elements increases capacity. How does energy consumption scales with the number of antennas?
- i.e. is it possible to adjust the number of antenna in order to improve energy efficiency at different network load?

Energy efficiency optimization

EE EE

- $\circ~$ the number of bits transferred per Joule of energy
- the ratio of average sum rate (in bit/second) and the average total power consumption (in Joule/s)

• Energy Efficiency (EE) =
$$\frac{\text{Average sum rate}}{\text{Power Consumption}}$$

= $\frac{K_c R_c (K_c, M_c, \{M_d\}_{d \neq c})}{P_c^{tot}(K_c, M_c)}$

□ The EE maximization problem for cell *c* for a particular load

$$\begin{array}{l} \text{maximize:} \ \frac{K_c R_c \ (K_c, M_c, \ \{M_d\}_{d \neq c})}{P_c^{tot}(K_c, \ M_c)} \\ \text{Subject to} \ M_c \geq K_c + 1 \end{array}$$

Problem formulation

- In order to capture the daily load variation, we model each BS as an M/G/m/m state-dependent queue
- Denoting the steady state probability of the BS *c* serving *n* number of users, , i.e., $\Pr[K_c = n]$ during time interval *h*, by $\pi_c(h, n)$
- □ The main problem formulation for BS *c* can be rewritten as

$$\underset{\mathbb{M}_{c}}{\text{maximize}} \sum_{h=1}^{H} \sum_{n=1}^{m} \pi_{c}(h,n) \frac{nR_{c}(n, M_{c}, \{M_{d}\}_{d\neq c})}{P_{c}^{tot}(n, M_{c})}$$
Subject to $M_{c}^{(h)}(n) \geq n+1$,

Where $R_c(K_c, M_c, \{M_d\}_{d \neq c})$ is the average rate per user when there are n users in the cell and $\mathbb{M}_c = [\mathcal{M}_c^{(1)} \mathcal{M}_c^{(1)} \dots \mathcal{M}_c^{(H)}]$ where $\mathcal{M}_c^{(h)}$ is the vector that gives the optimum number of antennas in cell *c* during the time interval *h*.

System model

Assumptions:

- $\circ~$ BS obtains perfect CSI for its users and
- applies zero forcing precoding i.e. intracell interference is calncelled out.

Array gain

- power allocation is adapted so that each user gets same rate
- $\circ~$ total average transmit power of the BS is fixed.

User Rate (average):

$$R_{c} = B\left(1 - \frac{K_{max}}{T_{c}}\right) \log_{2}\left(1 + \frac{\frac{pM_{c}}{K_{c}}\left(M_{c} - K_{c}\right)}{\Lambda_{cc}\sigma^{2} + \sum_{d \neq c}\Lambda_{cd}pM_{d}}\right)$$

B = bandwdith,

 T_c = coherence time and

 K_{max} = maximum number of users in any cell

 Λ_{cc} = the channel variance from the serving BS,

 $\sum_{d\neq c} \Lambda_{cd} p M_d$ = the avearge inter-cell interference power normalized by Λ_{cc} ,

 K_c = number of simultaneously served users

 M_c = Number of active antennas

KTH vetenskap och konst

Traffic Model

We model the massive MIMO system as an *M/G/m/m* state-dependent queue where maximum *m* numbers of users are served at a time.

□ The steady state probabiliy distribution

$$\pi_{c}(n) = \left[\frac{\left[\frac{\lambda s}{R_{c}(1)}\right]^{n}}{n!f(n)(f(n-1)\dots f(1))}\right]\pi_{c}(0), n = 1, 2, \dots m$$

where $\pi_c^{-1}(0) = 1 + \sum_{i=1}^m \left\{ \frac{\left| \frac{\pi_0}{R_c(1)} \right|}{i!f(i)f(i-1)....f(1)} \right\}$

 $R_c(1)$ = the rate when there is only one user in the system and $f(n) = \frac{R_c(n)}{R_c(1)}$, $R_c(n)$ is the average rate if there are n number of users in the system,

Traffic model-2

- □ we choose $m = K_{max}$, the number of users being served simultaneously gives global optimum EE and load carried by these number of users is mapped to the highest traffic demand of the DLP.
- □ For other network loads, we find the corresponding average number of users, e.g., for x% load $\lambda_x = \frac{x}{100} * \lambda_{max}$
- □ At 100% load we allow at most 2% blocking i.e. $\pi(K_{max}) = 0.02$.

Power consumption model

$$P_{\text{total}} = M_c P_{PA}(p) + P_{BB}(M_c, K_c) + P_{Oth}$$

The baseband processing power consumption is a nonlinear function of K_c but a linear function of M_c and can be summarized as

$$P_{BB}(M_c, K_c) = C_o^{BB} + M_c C_1^{BB}$$

PA consumption: $C_1^{PA} = P_{PA}(p) = \frac{1}{\eta} \sqrt{p P_{max,PA}}$

 $P_{total} \approx C_0 + C_1 M_c$

where $C_0 = C_0^{BB} + P_{Oth}$, $C_1 = C_1^{PA} + C_1^{BB}$, $P_{max,PA}$ = maximum transmit power of the PA, η = maximum efficiency at $p_{max,PA}$, $a \approx 0.0082$, a PA dependent parameter

EE maximization game

The objective function when the BS servers *n* users can be broadly written as

$$E_c = \frac{n \beta \log(1 - nM_c \gamma_{c,1} + \gamma_{c,1} M_c^2)}{C_0 + C_1 M_c}$$

where $\gamma_{c,1} = \frac{\frac{1}{n}p}{G_{cc}\sigma^2 + \sum_{d \neq c} pG_{cd}M_d}$, is the SINR when using a single antenna.

We define the EE maximization game, $G(\mathcal{K}, \mathcal{S}; \mathcal{E})$ where

o the players are the BSs,

• $S = S1 \times S2 \times ... \times S_C$ is the strategy space, i.e., space of number of active antennas,

 $\circ \quad \boldsymbol{\mathcal{E}} = E_c(\boldsymbol{\mathcal{M}}_c, \mathbf{M}_{-c}) \text{ the utility of the players}$

 S_c is a function of the number of antennas used by the interfering BSs, \mathbf{M}_{-c}

 $S_c(\mathcal{M}_c(\mathbf{n}): \mathbf{n} + 1 \leq \mathcal{M}_c \leq M_{max}, \forall n \in \mathcal{U}_c \text{ where } \mathcal{U}_c = \{1, 2, \dots, m\}$

The best response iteration and convergence

- In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given.
- The use of best response strategy gives rise to dynamic system of the form

 $\mathcal{M}_{c} = \operatorname{argmin}_{\mathcal{M}_{c} \in S_{c(M-c)}} E_{c}(\mathcal{M}_{c}, \mathbf{M}_{-c})$

□ The convergence of best response iteration to a unique Nash equilibrium has been proved by showing that this EE maximization problem can be modeled as a S-modular game.

Algorithm

Algorithm 1 Best response iteration $\mathcal{M}_c \leftarrow M_{\max} \cdot \mathbf{1}, \forall c \in \mathcal{C}.$ maxtol $\leftarrow 1$ while maxtol $\neq 0$ do for all $c \in C$ do $i \leftarrow c$ $\mathbf{M}_{-c} \leftarrow \sum_{n} \mathcal{M}_{d}(n) \pi_{n}, \forall n \in \mathcal{U}_{d}, \forall d : d \neq c$ Define strategy space S_c based on (16) $\mathcal{M}'_c \leftarrow \arg \max_{\mathcal{M}_c \in \mathcal{U}_c(\mathbf{M}_{-c})} E_c(\mathbf{M}_{-c})$ $\operatorname{tol}_c \leftarrow |\mathcal{M}'_c - \mathcal{M}_c|$ $\mathcal{M}_c \leftarrow \mathcal{M}'_c$ end for maxtol $\leftarrow \max_c(tol_c)$ end while

Simulation Parameters

Parameter	Value
Cell radius: d_{max} AMinimum distance, d_{min} Transmission Bandwidth, BTransmission Bandwidth, BPAPA maximum efficiency,BBS Fixed power : P_{0th} Channel coherence intervals: T_C Local oscillator Power: P_{SYN} Power required to run the circuit comp. at a BS: P_{BS} Total noise power: $B.\sigma^2$ Power required for coding of data signals:Power required for decoding of data signals: P_{DEC} Computational Computation efficiency at L_{BS}	500 m 35 m 20 MHz 80% 18 W 12600 symbols 2 W 1 W -96 dBm 0:1 W/(Gbit/s) 0:8 W/(Gbit/s) 12:8 Gflops/W

Interplay between *M_c* and *K_c*

- The relation between M_c and K_c is quite linear for different loads.
- Ratio between M_c and K_c is quite high when BS serves only few users which is around 2 at higher user states.
- The average number of antennas used at different loads vary mainly due to the probability distribution of the users.

• When serving few users, an additional antenna does not consume much energy compared to fixed consumption but contributes singnificantly to increase EE due to higher array gain $(M_c - K_c)$

Energy efficiency improvement

- EE increases with the increase in load for both the reference case and our scheme for both TPA and ET-PA.
- Our scheme attains significantly higher EE compared to the reference case at low load.
- EE gain keeps decreasing with the increase in load.

 At the peak load, the gain is insignificant as the probability of having small number of users which allows EE improvement by reducing antennas is very low.

EE and user rate tradeoff

- At very low load the EE has been increased with around 300% at the cost of around 50% reduction of the average user data rate.
- With the increase of load in the system, both the gain in EE and loss of user rate get reduced.

Over the 24 hour operation, EE has been found to be improved around 24% at the cost of around 13% reduction of user rate.

Thank you! cavdar@kth.se