Application aware converged access network

Divya Chitimalla

Architecture

Description about architecture

- PON architecture supports both fixed users and small cells
- ▶ NGFI is striving for traffic dependent, packet based fronthaul
- > PON can be used as fronthaul for next general packet based fronthaul
- There is need for intelligent resource allocation that takes into account various client needs
- This study focuses on QoE aware resource allocation in LTE (wireless) and also fronthaul bandwidth provisioning based on client demands
- Applications considered are video streaming, video conference since they take up major access resources.

China Mobile view on Next Generation Fronthaul Interface http://www.ieee1904.org/email/pdfLV66u9TRJ8,

Two level bandwidth dimensioning

- Resources are allocated in wireless domain using application information to maximize the QoE of users
- There algorithms are considered to achieve this
- Skype/Youtube based adaptive streaming is incorporated
- Each profile is made of certain resolution and frames per second
- Each profile is associated with an empirical MoS
- This information is made available at the MAC scheduler (could be centralized or independent) to allocate resources such that overall QoE is improved
- Once the wireless resources are allocated, fronthaul can be dimensioned for traffic/QoE demand

Supporting fronthaul standards

- Interface II between QAM+Multi-antenna mapping and Resource mapping by NGMI, can be packetized and traffic dependent
- Next generation frontahaul interface by china mobile is proposed to be Ethernet based
- IEEE workgroup 1903.4 is working on radio over Ethernet
- The proposed scenario also works for full fledged eNodeBs which backhaul the traffic to core network

Next Generation Mobile Networks 5G white paper https://www.ngmn.org/5g-white-paper IEEE workgroup 1904.3 on Radio over Ethernet

Skype profile levels

- Skype uses video adaptation based on network state
- Supported resolutions: 19200, 76800, 307200
- Supported frame rates: 5 to 28 fps
- Required data rates: 320 kbps to 27.6 mbps
- MoS is calculated using empirical formula using above parameters
- MoS ranges from 2.9 to 4.7
- Mobile and fixed clients using adaptive streaming applications are classified into 3 types based on minimum acceptable MoS

Resource allocation problem

- Given UE and cell association, client type and channel condition for each UE, find out the resource allocation such that it maximizes overall QoE of the system
- Constraints: total resource blocks, minimum acceptable MoS for each client type
- Objective: Cumulative MoS
- System: LTE 20 MHz, Rayleigh fading channel

Fading channel TBS assignment

-1	91	92	93	94	95	96	97	98	99	100
0	2536	2536	2600	2600	2664	2664	2728	2728	2728	2792
1	3368	3368	3368	3496	3496	3496	3496	3624	3624	3624
2	4136	4136	4136	4264	4264	4264	4392	4392	4392	4584
3	5352	5352	5352	5544	5544	5544	5736	5736	5736	5736
4	6456	6456	6712	6712	6712	6968	6968	6968	6968	7224
5	7992	7992	8248	8248	8248	8504	8504	8760	8760	8760
6	9528	9528	9528	9912	9912	9912	10296	10296	10296	10296
7	11064	11448	11448	11448	11448	11832	11832	11832	12216	12216
8	12576	12960	12960	12960	13536	13536	13536	13536	14112	14112
9	14112	14688	14688	14688	15264	15264	15264	15264	15840	15840
10	15840	16416	16416	16416	16992	16992	16992	16992	17568	17568
11	18336	18336	19080	19080	19080	19080	19848	19848	19848	19848
12	20616	21384	21384	21384	21384	22152	22152	22152	22920	22920
13	23688	23688	23688	24496	24496	24496	25456	25456	25456	25456
14	26416	26416	26416	27376	27376	27376	28336	28336	28336	28336
15	28336	28336	28336	29296	29296	29296	29296	30576	30576	30576
16	29296	30576	30576	30576	30576	31704	31704	31704	31704	32856
17	32856	32856	34008	34008	34008	35160	35160	35160	35160	36696
18	36696	36696	36696	37888	37888	37888	37888	39232	39232	39232
19	39232	39232	40576	40576	40576	40576	42368	42368	42368	43816
20	42368	42368	43816	43816	43816	45352	45352	45352	46888	46888
21	45352	46888	46888	46888	46888	48936	48936	48936	48936	51024
22	48936	48936	51024	51024	51024	51024	52752	52752	52752	55056
23	52752	52752	52752	55056	55056	55056	55056	57336	57336	57336
24	55056	57336	57336	57336	57336	59256	59256	59256	61664	61664
25	57336	59256	59256	59256	61664	61664	61664	61664	63776	63776
26	66592	68808	68808	68808	71112	71112	71112	73712	73712	75376

MCKP - Dynamic Programming Algorithm

- This problem can be modelled as a multiple choice knapsack problem and dynamic programming approach can be used to perform resource allocation
- For every UE weights and profits are determined based on their client type and channel condition
- Weight is number of resource blocks needed to achieve a certain video rate and hence certain MoS
- Profit is the incremental MoS achieved by using certain profile level
- Steps:
 - For every UE find out channel condition (every TTI), based on which maximum coding rate is calculated
 - Using this coding rate find out the acceptable weights and profits for each UE
 - ▶ For every UE pick one profile level (w,p) such that cumulate MoS is maximized

Modified Round Robin Algorithm

- Allocate resources such that minimum acceptable profiles are supported for all UE
- Calculate allocated budget based on what ever is allocated
- Choose a random UE number
- Allocate best profile within remaining budget that increases MoS of UE
- Repeat this in a round robin fashion until all the resources are allocated or all UEs are visited

Water-filling algorithm

- Allocate resources such that minimum acceptable profiles are supported for all UE
- Sort the UEs in decreasing channel conditions (coding rate)
- Calculate allocated budget based on what ever is allocated
- Select the UE with maximum coding rate
- Allocate best profile within remaining budget that increases MoS of UE
- Repeat this in a descending order of channel rates until all the resources are allocated or all UEs are visited

Results

... still working on them ...

Deliverables

- Results for MCKP algorithm
- Results for bandwidth allocation in fronthaul/backhaul part
- Better model/algorithms?

