
Programmable Networks – P4 overview

Presented by: Divya Chitimalla

6/24/2016 1

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen Gibb† ,
Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker** †Barefoot
Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016.

Why programmable networks
• Deploy tests and probes, can reduce time to recover from an outage

• Monitoring networks can be eliminated because network can now monitor

itself

• Eliminate redundant equipment. For example, big data-centers today

commonly deploy expensive middleboxes – load-balancers, address

translators, complex Network Function Virtualization (NFV) cluster of

thousands of servers to load-balance incoming packets across web servers.

• Only slow networks are programmable now. NPUs and FPGAs exist and are

flexible. But are 1/100th performance of fixed-function ASICs

6/24/2016 2 Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016.

Barefoot Networks
• Created first programmable chip that performs like ASIC

• P4 - Programming Protocol-independent Packet Processors – www.p4.org exists now

as an independent entity to develop a rich open source ecosystem

• P4 offers a programming abstraction that is familiar to network owners rather than

VHDL

• Proposed architecture does for networking what DSP did for signal processing, GPU

did for graphics and TPU is doing for machine learning

• Programs are written in a high level domain specific language (P4), compiled down by

Barefoot Capilano compiler, and optimized to run at full line-rate on PISA device

6/24/2016 3 Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016.

P4
P4 is a high-level language for programming protocol-independent packet processors

OpenFlow explicitly specifies protocol headers on which it operates. This set has grown

from 12 to 41 fields in a few years, increasing complexity of specification

(1) Reconfigurability : Programmers should be able to change way switches process

packets once deployed

(2) Protocol independence: Switches should not be tied to any specific network protocols

(3) Target independence: independent of specifics of underlying hardware

Future switches should support mechanisms for parsing packets and matching header

allowing controller applications to leverage capabilities of common, open interface (i.e., a

new \OpenFlow 2.0" API).

6/24/2016 4 Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016.

What does it do

6/24/2016 5 Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016.

Steps in P4

6/24/2016 6
P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Header Formats
header ethernet {

fields {

 dst_addr : 48;

//width in bits

 src_addr : 48;

 ethertype : 16;

 }

}

6/24/2016 7

header vlan {
 fields {
 pcp : 3;
 cfi : 1;
 vid : 12;
 ethertype : 16;
 }
}

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

 Packet Parser
parser start {

 ethernet;

}

parser ethernet {

 switch(ethertype) {

 case 0x8100: vlan;

 case 0x9100: vlan;

 case 0x800: ipv4;

 // Or cases

 }

}

6/24/2016 8

parser vlan {

 switch(ethertype) {

 case 0xaaaa: mTag;

 case 0x800: ipv4;

 // Or cases

 }

}

parser mTag {

 switch(ethertype) {

 case 0x800: ipv4;

 // Or cases

}

}

Parsing starts in start state

and proceeds until an

explicit stop state is reached

Extracted headers are

forwarded to match+action
processing

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Table specification

• Programmer describes how header fields are to be matched in

match+action stages (e.g., should they be exact matches,

ranges, or wildcards?) and what actions should be performed

when a match occurs

• Reads attribute declares which fields to match, qualified by

match type (exact, ternary, etc)

• Actions attribute lists possible actions which may be applied to a

packet by table

6/24/2016 9
P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Table action
action add_mTag(up1, up2, down1, down2,

egr_spec) {

 add_header(mTag);

 // Copy VLAN ethertype to mTag

 copy_field(mTag.ethertype, vlan.ethertype);

 // Set VLAN's ethertype to signal mTag

 set_field(vlan.ethertype, 0xaaaa);

 set_field(mTag.up1, up1);

 set_field(mTag.up2, up2);

 set_field(mTag.down1, down1);

 set_field(mTag.down2, down2);

 // Set destination egress port as well

 set_field(metadata.egress_spec, egr_spec);

}

6/24/2016 10

P4's primitive actions include:

 set field: Set a header to a value.

Masked sets are supported.

 copy field: Copy one field to another.

 add header: Set a specific header instance (and all its

fields) as valid.

 remove header: Delete (\pop") a header (and all its

fields) from a packet.

 increment: Increment or decrement value in a field.

 checksum: Calculate a checksum over some set of
header fields (e.g., an IPv4 checksum).

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Control Program
Once tables and actions are

defined, only remaining task is

to specify flow of control from

one table to next

Control flow is specified as a

program via a collection of

functions, conditionals, and

table references

6/24/2016 11

control main() {

 // Verify mTag state and port are

consistent

table(source_check);

 // If no error from source_check,

continue

 if (!defined(metadata.ingress_error))

{

 // Attempt to switch to end hosts

table(local_switching);

 if (!defined(metadata.egress_spec))

{

 // Not a known local host; try

mtagging

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014 Pat Bosshart† , Dan Daly* , Glen
Gibb† , Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker**
†Barefoot Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.

Conclusion

• Proposed a step towards more flexible switches whose functionality

is specified and may be changed once deployed

• Programmer decides how forwarding plane processes packets

without worrying about implementation details

• A compiler transforms an imperative program into a table

dependency graph that can be mapped to many target switches,

including optimized hardware implementations

6/24/2016 12

