
Programmable Networks – P4 overview   

 

Presented by: Divya Chitimalla 

6/24/2016 1 

P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review,  2014 Pat Bosshart† , Dan Daly* , Glen Gibb† , 
Martin Izzard† , Nick McKeown‡ , Jennifer Rexford** , Cole Schlesinger**, Dan Talayco† , Amin Vahdat¶ , George Varghese§ , David Walker** †Barefoot 
Networks * Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research.  

Worlds Fastest Most Programmable Networks Barefoot Networks white paper, 2016. 



Why programmable networks 
• Deploy tests and probes, can reduce  time to recover from an outage 

• Monitoring networks can be eliminated because  network can now monitor 

itself 

• Eliminate redundant equipment. For example, big data-centers today 

commonly deploy expensive middleboxes – load-balancers, address 

translators, complex Network Function Virtualization (NFV) cluster of 

thousands of servers to load-balance incoming packets across web servers. 

• Only slow networks are programmable now. NPUs and FPGAs exist and are 

flexible. But are 1/100th  performance of fixed-function ASICs 
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Barefoot Networks 
• Created  first programmable chip that performs like ASIC 

• P4 - Programming Protocol-independent Packet Processors – www.p4.org exists now 

as an independent entity to develop a rich open source ecosystem 

• P4 offers a programming abstraction that is familiar to network owners rather than 

VHDL 

• Proposed architecture does for networking what  DSP did for signal processing,  GPU 

did for graphics and  TPU is doing for machine learning 

• Programs are written in a high level domain specific language (P4), compiled down by  

Barefoot Capilano compiler, and optimized to run at full line-rate on  PISA device 
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P4 
P4 is a high-level language for programming protocol-independent packet processors 

OpenFlow explicitly specifies protocol headers on which it operates. This set has grown 

from 12 to 41 fields in a few years, increasing  complexity of  specification 

 

(1) Reconfigurability : Programmers should be able to change way switches process 

packets once deployed 

(2) Protocol independence: Switches should not be tied to any specific network protocols  

(3) Target independence: independent of  specifics of  underlying hardware 

 

Future switches should support  mechanisms for parsing packets and matching header 

allowing controller applications to leverage capabilities of common, open interface (i.e., a 

new \OpenFlow 2.0" API). 
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What does it do 
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Steps in P4 
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Header Formats 
header ethernet { 

fields { 

 dst_addr : 48; 

//width in bits 

 src_addr : 48; 

 ethertype : 16; 

 } 

} 
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header vlan { 
 fields { 
  pcp : 3; 
  cfi : 1; 
  vid : 12; 
  ethertype : 16; 
  } 
} 
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 Packet Parser 
parser start { 

 ethernet; 

} 

parser ethernet { 

 switch(ethertype) { 

 case 0x8100: vlan; 

 case 0x9100: vlan; 

 case 0x800: ipv4; 

 // Or cases 

 } 

} 
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parser vlan { 

 switch(ethertype) { 

 case 0xaaaa: mTag; 

 case 0x800: ipv4; 

 // Or cases 

 } 

} 

parser mTag { 

 switch(ethertype) { 

 case 0x800: ipv4; 

        // Or cases 

} 

} 

Parsing starts in  start state 

and proceeds until an 

explicit stop state is reached 

 

Extracted headers are 

forwarded to match+action 
processing 
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Table specification 

• Programmer describes how  header fields are to be matched in  

match+action stages (e.g., should they be exact matches, 

ranges, or wildcards?) and what actions should be performed 

when a match occurs 

• Reads attribute declares which fields to match, qualified by  

match type (exact, ternary, etc) 

• Actions attribute lists  possible actions which may be applied to a 

packet by table 
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Table action 
action add_mTag(up1, up2, down1, down2, 

egr_spec) { 

 add_header(mTag); 

 // Copy VLAN ethertype to mTag 

 copy_field(mTag.ethertype, vlan.ethertype); 

 // Set VLAN's ethertype to signal mTag 

 set_field(vlan.ethertype, 0xaaaa); 

 set_field(mTag.up1, up1); 

 set_field(mTag.up2, up2); 

 set_field(mTag.down1, down1); 

 set_field(mTag.down2, down2); 

 // Set  destination egress port as well 

 set_field(metadata.egress_spec, egr_spec); 

} 
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P4's primitive actions include: 

 set field: Set a header to a value. 

Masked sets are supported. 

 copy field: Copy one field to another. 

 add header: Set a specific header instance (and all its 

fields) as valid. 

 remove header: Delete (\pop") a header (and all its 

fields) from a packet. 

 increment: Increment or decrement  value in a field. 

 checksum: Calculate a checksum over some set of 
header fields (e.g., an IPv4 checksum). 
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Control Program 
Once tables and actions are 

defined,  only remaining task is 

to specify flow of control from 

one table to next 

 

Control flow is specified as a 

program via a collection of 

functions, conditionals, and 

table references 
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control main() { 

 // Verify mTag state and port are 

consistent 

table(source_check); 

 // If no error from source_check, 

continue 

 if (!defined(metadata.ingress_error)) 

{ 

 // Attempt to switch to end hosts 

table(local_switching); 

 if (!defined(metadata.egress_spec)) 

{ 

 // Not a known local host; try 

mtagging 
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Conclusion 

• Proposed a step towards more flexible switches whose functionality 

is specified and may be changed once deployed 

• Programmer decides how forwarding plane processes packets 

without worrying about implementation details  

• A compiler transforms an imperative program into a table 

dependency graph that can be mapped to many target switches, 

including optimized hardware implementations 
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