Oversubscription Dimensioning of Next-Generation PONs With Different Service Levels

Overview

- Planning PONs using oversubscription concept and shows its applicability in the dimensioning of 1 Gb/s access
- With 2 types of users basic (residential) and premium (business) with different service level requirements and activity patterns
- Show that only next-generation PON networks can reach a large number of users with acceptable service levels

Residential and Non-Residential Users

- 1 Gb/s downstream Internet access to both residential and business customers
- Residential customers use it as means to enhance their experience, given increasing devices
- Business services or wireless backhaul, require better service levels than conventional basic connections, in particular, low-latency and higher bandwidth guarantees

PONs

- PON is choice in medium and long term due to its speed and cost-effectiveness
- GPON and EPON are becoming widely spread in the access network, and their next-generations have been recently standardized
- OLT arbitrates access to the shared media thanks to a Dynamic Bandwidth Allocation algorithm which allocates transmission windows to users in a TDM-based sharing model
- Total bandwidth is shared between all users in a dynamic fashion, allowing assignment to only to active users as needed

Oversubscription Model

- Only few number of subscribers are simultaneously active allowing network designers apply oversubscription models and leverage statistical multiplexing gains
- Question is to what extent residential and business users can be mixed on the same PON while maintaining SLAs
- Show that only Next-Generation PON networks can reach a large number of users (split ratio 1:256) with acceptable service levels

Overview of TDM-PON Technologies

	GPON	XG-PON	TWDM-PON
ITU-T Standard	G.984	G.987	G.989
DL/UL Rate	2.5/1.25	10/2.5	40/10
(Gb/s)		10/10	80/20
Max. Split	1:64	1:128	1:256

- Both GPON and XG-PON networks use one wavelength for downstream and another one for upstream shared by TDM
- TWDM-PON stacks four or eight XG-PONs on different wavelengths (4 × 10G/2.5G, or 8 × 10G/2.5G).
- Both GPON and XG-PON may coexist on the same ODN, but the wavelength plans of TWDM-PON does not allow GPON or XG-PON users on the same ODN

Capacity Planning With Oversubscription For Single Class

- *N* refer to the maximum number of users physically attached to the same PON branch
- User activity is two-state Bernoulli processes, i.e. active with probability q or idle with probability 1-q
- X refer to the random variable that considers the number of active users at a given random time, X follows a Binomial distribution X ~ B(N, q)
- B denote the rate observed per individual user in the PON branch, as follows:
 B = min{C/X, B_{peak}}
- *C* is the total offered bandwidth capacity of each NG-PON technology B_{peak} is the maximum (peak) bandwidth rate provided to the users
- When all users are active (*X* = *N*), all users experience the minimum guaranteed bandwidth rate *C/N*, when *k* users are active *C/k* bandwidth is available

Important Metrics

Users and operators are interested in two metrics regarding bandwidth: average value E(B) perceived by active users and percentage of time β whereby a certain peak bandwidth B_{peak} is guaranteed

$$E(B) = \sum_{j=0}^{N} \min\left\{\frac{C}{j}, B_{peak}\right\} P(X = j) \qquad N_{act}^{(max)} = \left\lfloor\frac{C}{B_{peak}}\right\rfloor \qquad \beta = P\left(X \le \left\lfloor\frac{C}{B_{peak}}\right\rfloor\right)$$
$$= \sum_{j=0}^{N_{act}^{(max)}} B_{peak}\binom{N}{j}q^{j}(1-q)^{N-j}$$
$$+ \sum_{j=N_{act}^{(max)}}^{N} \frac{C}{j}\binom{N}{j}q^{j}(1-q)^{N-j}$$

8 8/24/2016

				Split			
	1:4	1:8	1:16	1:32	1:64	1:128	1:256
			<i>q</i> = 15%				
GPON	998 Mb/s	977 Mb/s	870 Mb/s	588 Mb/s	289 Mb/s	-	-
	99%	89%	56%	12%	$\sim \%$	-	-
XG-PON	1000 Mb/s	1000 Mb/s	1000 Mb/s	999 Mb/s	929 Mb/s	545 Mb/s	-
	~100%	~100%	99%	99%	63%	1%	-
40G-TWDM	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	999 Mb/s	929 Mb/s
	~100%	~100%	~100%	~100%	99%	99%	63%
80G-TWDM	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	999 Mb/s
	~100%	~100%	~100%	~100%	~100%	99%	99%
			q = 50%				
GPON	934 Mb/s	665 Mb/s	337 Mb/s	161 Mb/s	79 Mb/s	-	-
	68%	14%	~0%	~0%	~0%	-	-
XG-PON	1000 Mb/s	1000 Mb/s	987 Mb/s	645 Mb/s	317 Mb/s	157 Mb/s	-
	~100%	~100%	89%	2%	~0%	~0%	-
40G-TWDM	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	987 Mb/s	645 Mb/s	317 Mb/s
	~100%	~100%	~100%	~100%	89%	2%	~0%
80G-TWDM	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	1000 Mb/s	987 Mb/s	645 Mb/s
	~100%	~100%	~100%	~100%	~100%	89%	2%

BANDWIDTH COMPARISON BETWEEN THE MAIN PON TECHNOLOGIES: E(B) and β When $B_{peak} = 1$ Gb/s

When q = 15%, XG-PON significantly improves the results of GPON providing B_{peak} during a large percentage of time, allowing split ratios of up to 1:64.

٠

- TWDM-PON provides at least 1 Gb/s during nearly 100% of the time for split ratios up to 1:128 and may even reach 1:256 with good performance (β = 63% and *E*(*B*) = 929 Mb/s)
- When large user activity periods are expected, for instance q = 50%, only TWDM-PON can reach up to 64 users with a minimum of B_{peak} during 20% of the time.

UCDAVIS

8/24/2016 10

Modelling With 2 User Types

- Basic users that show low values of *q* and demand *Bpeak* only during a low value of β, and (2) premium users that show large values of *q* and require *Bpeak* guaranteed during βmin = 100% of the time
- Maximum number of premium users Np is limited to: $Np = C/B_{peak}$
- Every pair (Np, Nb) where Np + Nb is a power of two, we need to compute the percentage of time where the basic users receive Bpeak:

$$P\left(X_{b} \leq \left\lfloor \frac{C - B_{peak} X_{p}}{B_{peak}} \right\rfloor\right) \qquad E(B_{b}) = \sum_{k=0}^{N_{p}} E(B_{b}|X_{p} = k)P(X_{p} = k), \quad X_{p} \sim B(N_{p}, q_{p})$$
$$= \sum_{k=0}^{N_{p}} P\left(X_{b} \leq \left\lfloor \frac{C - B_{peak} k}{B_{peak}} \right\rfloor \middle| X_{p} = k\right)P(X_{p} = k)$$

TWDM-PON, the calculus can be reused from the XG-PON results, since TWDM-PON is in fact a stacking of four or eight XG-PONs on different wavelengths.

- For instance, 40G-TWDM-PON with split 1:128 is essentially a stacking of four XG-PONs on four different wavelenghts, thus allowing 32 users per lambda (4 × 32)
- 80G-TWDM-PON with split 1:256 gives the same numbers as XG-PON (1:32)
- Thus, at most ten business users can be located on the same wavelength of a TWDM-PON (i.e. 40 business total for 40G-TWDM-PON and 80 business users for 80G-TWDM-PON)

8/24/2016

				XG-PON 1:16	XG-PON 1:32	XG-PON 1:64
$E(B_b), \beta_b$		GPON		40G-TWDM 1:64	40G-TWDM 1:128	40G-TWDM 1:256
n_p	1:8	1:16	1:32	80G-TWDM 1:128	80G-TWDM 1:256	80G-TWDM 1:512*
$n_p = 0$	977, 89%	870, 56%	588, 12%	1000, ~100%	999, 99%	929, 63%
$n_{p} = 1$	947, 82%	795, 46%	499, 9%	1000, ~100%	998, 99%	913, 59%
$n_{p} = 2$	870, 72%	678, 36%	395, 6%	1000, ~100%	998, 98%	895, 54%
$n_{p} = 3$	-	-	-	1000, ~100%	997, 98%	875, 49%
$n_{p} = 5$	-	-	-	1000, ~100%	992, 96%	825, 40%
$n_{p} = 7$	-	-	-	999, ~100%	982, 92%	762, 31%
$n_{p} = 9$	-	-	-	998, ~100%	959, 86%	686, 23%
$n_p = 10$	-	-	-	994, 99%	941, 83%	643, 19%

BANDWIDTH COMPARISON FOR DIFFERENT BUSINESS/RESIDENTIAL CONFIGURATIONS IN GPON, XG-PON AND TWDM-PON

13 8/24/2016

Conclusion

- GPON provides good results for splits 1:8 and 1:16, but cannot meet the requirements for 1:32 and beyond. XG-PON is recommended for splits 1:32 and even 1:64 with a moderate number of premium Users
- 40G-TWDM-PON shows the same performance, but for splits 1:128 and 1:256, but 80G-TWDM-PON con go beyond these numbers and even reach 512 users.
- TWDM-PONs provide the best performance results and highest number of connected users.
- TWDM-PONs are cost-effective technologies in dense urban areas, where the average distance between the ONUs and the OLT is small and the Optical Distribution Network (ODN) can be shared by a large number of customers, not that much in rural areas

