# Survey of ETSI NFV standardization documents

BY ABHISHEK GUPTA FRIDAY GROUP MEETING FEBRUARY 26, 2016



# **VNFaaS (Virtual Network Function as a Service)**

- In our present work, we consider the VNFaaS use-case
- Here, the service provider is responsible for deploying, configuring, updating and managing the operation of the VNF instance to provide the expected service level (SLA) for subscribers
- Enterprise network functions that can be virtualized : AR(Enterprise Access Router/Enterprise CPE), PE(Provider Edge Router), FW (Enterprise Firewall), NG-FW(Enterprise NG-FW), WOC(Enterprise WAN Optimization Controller), DPI(Deep Packet Inspection - Appliance/Function), IPS(Intrusion Prevention System), Network Performance Monitoring.



#### **Use cases for NFV**





# **Network-enabled Cloud/ Integrated Cloud (AT&T)**





# **Simulation Topology**





#### **Results**





# Assumptions

- Only a single type of service was provisioned
  - There may be several services to be provisioned
- · Service chain is a single linear chain
  - When multiple services are to be deployed, we will have a VNF-Forwarding Graph (VNF-FG)
  - For services that do not specify the service chain order, we will have a VNF-Set (VNF-S)
- Single datacenter in the scenario
  - Multiple datacenters scenario needs to be investigated
- We consider a clean-slate scenario (no service have been deployed yet)
  - The scenario where services have already been deployed is also to be considered.
- · VNF scaling is considered as up/down (parallelizable)
  - · VNF scaling can in fact in/out (non-parallelizable)



#### Continued...

- VNF State is not considered
  - A VNF maybe state-full or stateless
- No overhead of resource allocation
  - Alllocation issues at multiple levels compute node resources(CPU, I/O, memory, storage, hypervisor), control plane complexity etc.
- No virtual path setup cost
  - · Variety of tunneling protocols used.
  - Allocation and de-allocation of these paths must have paths associated with them.
- No SLA & QoS requirements
  - SLA and QoS requirements of the various services to be deployed need to be considered.



## **General domain architecture and associated Interfaces**





#### Continued...





# Various domains of architecture



Infrastructure Network Domain



# **Hypervisor domain**

#### **General Architecture of a Cloud Hypervisor**





# Hardware support for VM performance improvement

- multicore processors supporting multiple independent parallel threads of execution
- specific CPU enhancements/instructions to control memory allocation and direct access on I/O devices to VM memory allocations
- PCI-e bus enhancements, notably Single Root I/O virtualization (SR-IOV)



# Hypervisor for high performance NFV VMs

- Exclusive allocation of whole CPU cores to VMs
- Direct memory mapped polled drivers for VMs to directly access the physical NICs using user mode instructions requiring no 'context switching'
- Direct memory mapped polled drivers for interVM communications again using user mode instructions requiring no 'context switching'
- vSwitch implementation as a high performance VM again using direct memory mapping and user mode instructions requiring no 'context switching'.



## **NFV Hypervisor Architecture**





## **Network domain**

#### **Layering Model**





# **Traffic Isolation**





# VNF - FG (Virtual Network Function - Forwarding Graph)

#### Logical View of a VNF-FG





#### Continued....





#### Continued...

#### **Physical View of a VNF-FG**





#### **Network Service**





#### Continued...

- A service may be
  - · Orchestrated out of existing services i.e. the VNF-FG
  - · Deployment of new VNFs i.e. add new nodes to the VNF-FG
  - · Or can be a combination of both
- A FG overall may be composed of both physical and virtual network functions
- If the VNFs are not required to be in a strict order then we will have a VNF-Set (VNF-S)



# **Challenges in VNF-FG deployment**

- Specifying attributes of the VNF-FG. Especially, how to best define and also determine the dependency between the VNFs, that are to be deployed for a service.
- Finding measuring techniques for the above.
- Supporting network services that cross administrative domains.



# **Compute domain**

#### **Functional elements of the compute domain**





# **Disaggregation Model**





# **NFVI deployment scenarios**

| Deployment Scenario                                                                                                      | Building | Host<br>Hard- | Hyper-<br>visor | Guest VNF     | cf. NIST Cloud<br>Model |  |  |
|--------------------------------------------------------------------------------------------------------------------------|----------|---------------|-----------------|---------------|-------------------------|--|--|
|                                                                                                                          |          | ware          |                 |               |                         |  |  |
| Monolithic Operator                                                                                                      | N        | N             | N               | N             | Private Cloud           |  |  |
| Network Operator Hosting Virtual Network Operators                                                                       | N        | N             | N               | N, N1, N2     | Hybrid Cloud            |  |  |
| Hosted Network Operator                                                                                                  | Н        | Н             | Н               | N             |                         |  |  |
| Hosted Communications Providers                                                                                          | н        | Н             | Н               | N1, N2, N3    | Community               |  |  |
|                                                                                                                          |          |               |                 |               | Cloud                   |  |  |
| Hosted Communications and Application Providers                                                                          | Н        | Н             | Н               | N1, N2, N3, P | Public Cloud            |  |  |
| Managed Network Service on Customer Premises                                                                             | С        | N             | N               | N             |                         |  |  |
| Managed Network Service on Customer Equipment                                                                            | С        | С             | N               | N             |                         |  |  |
| NOTE: The different letters represent different companies or organisations, and are chosen to represent different roles, |          |               |                 |               |                         |  |  |
| e.g. H = hosting provider, N = network operator, P = public, C = customer.                                               |          |               |                 |               |                         |  |  |



### **Potential NFVI scale**

| # N-PoPs          | Example Location Types | Example NE types         | NFV Use cases          |
|-------------------|------------------------|--------------------------|------------------------|
| 1 - 10            | IT Data Center         | firewall                 | NFVIaaS, VNFaaS,       |
|                   |                        |                          | VNPaaS, VNF Forwarding |
|                   |                        |                          | Graph                  |
| 10 - 100          | Major Central Office   | router                   | vIMS                   |
| 100 - 1 000       | Minor Central Office   | BRAS                     |                        |
| 1 000 - 1 000 000 | Curbside Cabinet, Cell | eNodeB, DSLAM            | vCDN                   |
|                   | Tower                  |                          | vMobile Base Station   |
| 1 000 000 +       | Subscriber Premises    | CPE, Mobile Devices, IoT | vCPE, vFixed Access    |
|                   |                        |                          | Network                |



# **NFVI hardware elements**

- Rack
- Fabric
- TOR switch
- Power grid
- · Rack shelf
- Server chassis
- Storage chassis
- Accelerator blades/chassis



# NFV architecture scope within the NFV reference architecture framework





### **VNF** Architecture

- VNF Descriptor (VNFD) Gives the resource requirements of a VNF instance. Provided by the VNF vendor
- VNFC Virtual Network Function Component
- VNFCI Virtual Network Function Component Instance





# **VNF Workload Types**

· Data plane workload e.g. CDN cache node, vRouter

· Control plane workload e.g. authentication

 Signal processing workloads e.g. FFT decoding and encoding in a C-RAN BBU

• Storage workloads



#### Workloads and NFV use cases

NFVI as a Service

3. V NF as a Service

Virtual Network Platform as

Virtualisation of Mobile Core

5. Virtualisation of Mobile Bas 5. Virtualisation of the Home B

9. Fixed Access Network Functi

7. Service chains 8. Virtualisation of CDNs

Use case

|                    |                        | Data plane |                  | Control plane                   |         |                | Signal processing   | Ctorneo           | orulage       |                |  |
|--------------------|------------------------|------------|------------------|---------------------------------|---------|----------------|---------------------|-------------------|---------------|----------------|--|
|                    | VNF                    | Ed ge NF   | Intermed iate NF | Intermediate NF with encryption | Routing | Authentication | Session man agement | Signal processing | Non-intensive | R/W I ntensive |  |
|                    | N/A                    |            |                  |                                 |         |                |                     |                   |               |                |  |
| a Service          | N/A                    |            |                  |                                 |         |                |                     |                   |               |                |  |
|                    | E-CPE (Enterprise-CPE) |            | х                |                                 | х       | х              |                     |                   | х             |                |  |
|                    | PE                     |            | х                | х                               | х       | х              |                     |                   | х             |                |  |
|                    | PW                     |            | х                |                                 |         |                |                     |                   | х             |                |  |
|                    | DPI                    |            | х                |                                 |         |                |                     |                   |               | х              |  |
|                    | MME                    |            |                  |                                 | х       |                | х                   |                   | х             |                |  |
|                    | S-GW                   |            |                  | х                               | х       |                |                     |                   | х             |                |  |
|                    | P-GW                   |            | х                |                                 | х       | х              |                     |                   | х             |                |  |
|                    | PCRF                   |            |                  |                                 | х       |                | х                   |                   | х             |                |  |
|                    | SGSN                   |            |                  | х                               | х       |                | х                   |                   | х             |                |  |
| Network and IMS    | GGSN                   |            | х                |                                 | х       | х              | х                   |                   | х             |                |  |
|                    | P-CSCF                 |            | х                |                                 | х       | х              | х                   |                   | х             |                |  |
|                    | S-CSCF                 |            |                  |                                 | х       | х              | х                   |                   | х             |                |  |
|                    | I-CS CF                |            |                  |                                 | х       |                | х                   |                   | х             |                |  |
|                    | MGCF                   |            |                  |                                 | х       |                | х                   |                   | х             |                |  |
|                    | AS                     | х          |                  |                                 |         |                | х                   |                   | х             |                |  |
| Station            | BBU                    |            |                  |                                 |         |                | х                   | х                 |               |                |  |
| nvironment         | RGW                    |            | х                |                                 | х       | х              |                     |                   | х             |                |  |
|                    | STB                    | х          |                  |                                 |         |                |                     |                   | х             |                |  |
|                    | N/A                    |            |                  |                                 |         |                |                     |                   |               |                |  |
|                    | CDN Cache Node         | х          |                  |                                 |         |                |                     |                   |               | х              |  |
|                    | CDN Controller         |            |                  |                                 | х       |                | х                   |                   | х             |                |  |
|                    | OLT                    |            | х                |                                 | х       |                |                     | Х                 | х             |                |  |
|                    | DSLAM                  |            | х                |                                 | х       | х              |                     | Х                 | х             |                |  |
| ons Virtualisation | ONU                    |            | х                |                                 |         |                |                     | х                 | х             |                |  |
|                    | ONT                    |            | х                |                                 | х       |                |                     | х                 | х             |                |  |





- Statefulness will create another level of complexity, e.g. a session (transaction) consistency has to be preserved and has to be taken into account in procedures such as load balancing
- The data repository holding the externalized state may in the same VNF
- The data repository holding the externalized state may be an external VNF





# **VNF Load Balancing models**

#### · VNF internal load balancer



VNF-external Load Balancer





#### Continued...

End-to-End Load Balancing



Infrastructure Network Load Balancer





# **Elasticity of VNFs**

- No elasticity
  - The VNF requires a fixed set of resources that cannot be changed.
- Elasticity by scaling up/down only
  - The NFV framework can increase or decrease the size, performance or bandwidth of the virtual resources
- Elasticity by scaling out/in only
  - The VNF is able to perform scaling operations by separately adding/removing instances of specified VNFCs
- Elasticity in either dimensions
  - $\cdot\,$  The VNF has VNFCs that may be scaled out/in, up/down or both



# **VNF migration capability**

- No live migration supported
- Live migration supported
- Partial Migration
- Other schemes shutdown/restart while moving from one hardware to the other
- There may be further scalability/reliability/redundancy constraints on how many VNFs can be deployed on a single physical host



# **VNF States and Transitions (from orchestration)**

| State                              | Description                                                |  |  |
|------------------------------------|------------------------------------------------------------|--|--|
| Null                               | A VNF Instance does not exist and is about to be created.  |  |  |
| Instantiated Not Configured        | VNF Instance does exist but is not configured for service. |  |  |
| Instantiated Configured - Inactive | A VNF Instance is configured for service.                  |  |  |
| Instantiated Configured - Active   | A VNF Instance that participates in service.               |  |  |
| Terminated                         | A VNF Instance has ceased to exist.                        |  |  |





[8] ETSI NFV; Virtual Network Function Architecture

#### **VNF Architecture Design Example**





# **VNFC/VNF to VNFC/VNF communication**





# **NFV Interconnection options**





[1]"ETSI NFV; Infrastructure Overview"

#### Continued...

 VNFC Memory to VNFC Memory - VNFC must have affinity for shared memory access (for low latency data paths between VNFs)

Faster Network Access - SR-IOV (single root input/output virtualization) is used ensure latency between the NIC and the VM is optimized. This enables bare metal performance but requires that the server NIC's support SRIOV.



switch





•

#### Fast storage access

- RDMA (Remote Direct Memory Access) bypasses the operating system and the CPU
- iSCSI extensions for RDMA (iSER) accelerate hypervisor traffic, includes storage access, VM migration, and data and VM replication.
- RoCE : RDMA over Converged Ethernet.
- ETH (ethernet support from 40 Gbps today to 100 Gbps in the future) and IB (InfiniBand support from 56 Gbps today to 104 Gbps in the future)networks are utilized.





# Interfaces within the compute domain

- · PCle
- · SR-IOV
- RDMA and RoCE support
- InfiniBand
- · DPDK & ODP Support



## **Technologies to setup virtual network paths** (virtual path setup cost)

- Virtual Local Area Network (VLAN)
- Virtual Private LAN Service (VPLS)
- Virtual extensible Local Area Network (VxLAN)
- Network Virtualisation using Generic Routing Encapsulation (NVGRE)



# **Performance - HW Implementation**

- · CPU Architecture and basic performance levels PCI-E, Infiniband, clock speed, Number of Cores, etc.
- NFVI Compute Node architecture and connectivity Bus structure and BW, NIC performance, Memory and Storage structure.
- Cache structure and sizes.
- Support for large memory pages and extended TLB caches with large pages.
- Support for SR-IOV (classification of packets in independent, per VM TX/RX queues) and other traffic & data optimization technologies.
- Direct I/O access to processor memory & OS, e.g. Architectures that support DMA (Direct Memory Access) and RDMA.
- IOMMU or translation services for I/O.



# **Performance - Acceleration technologies**

- On Chip HW based acceleration e.g. AES, CRC, Cryptography, Transcoding.
- Compute intensive acceleration e.g. Heterogeneous Computing/GPU.
- Compute acceleration pool.
- Network intensive function acceleration e.g. NP, FPGA, CPU based support for data plane workload acceleration and data traffic optimization - e.g. NAT, ACL, DPI.
- Storage acceleration e.g. Storage Clusters.
- NIC based acceleration e.g. SR-IOV, vSwitch Bypass, Network Intensive processing.



# **Service Quality Metrics**

Virtual machine service quality metrics.

- Virtual network service quality metrics.
- Technology components offered 'as-a-Service' (e.g. Database-as-a-Service) quality metrics.
- Orchestration service quality metrics.





•

٠

# **QoS metrics**

- Throughput
- Latency
- Frame loss rate
- Back-to-Back Frame Rate
- Packet delay variation
- Service Disruption Time for Fail-over convergence



# **Dynamic Hardware Metrics (RA costs?)**

| Resource                 | Metrics                | Examples and Units                                                                                                                                                                                                                                                                                                                    |
|--------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical Server Blade    | Initialization Time    | <ul> <li>Time from power activation until "in-service", informing all necessary managers and orchestrators that the resources on the server/blade are ready for commissioning (<i>in the form of an operating Hypervisor ready to instantiate a VM to serve an VNFi.</i></li> <li>Is this wording sufficiently accurate?).</li> </ul> |
|                          | Failed Initializations | <ul> <li>Count of attempted Initializations that do not result in the<br/>server/blade reaching the state of readiness for<br/>commissioning.</li> </ul>                                                                                                                                                                              |
| Storage Unit (i.e. disk) | Activation Time        | Time to fully stable, active use in array (such as adding/replacing a member of a RAID array? Better example?).                                                                                                                                                                                                                       |
|                          | Failed Activations     | <ul> <li>Count of attempted Activations that do not result in the<br/>storage unit reaching the state of readiness.</li> </ul>                                                                                                                                                                                                        |



## **CPU-related dynamic hardware activation metrics**

|                                  | Speed                             | Accuracy    | Reliability      |
|----------------------------------|-----------------------------------|-------------|------------------|
| Activation                       | Initialization time               |             | Failed           |
|                                  |                                   |             | initializations, |
| Operation                        | Available core count,             | LLC misses, | Time to Failure  |
|                                  | Per core: temperature,            | TLB misses  | Error-free       |
|                                  | Idle power state residency        |             | Processing Time  |
|                                  | Operating voltage/frequency point |             | -                |
|                                  | residency,                        |             |                  |
|                                  | Cache utilization                 |             |                  |
| De-activation/Deletion/Take-down |                                   |             |                  |



# References

- [1]ETSI NFV; Use-Cases
- [2]ETSI NFV; Infrastructure Overview
- [3]ETSI NFV; Architectural Framework
- · [4]ETSI NFV; Infrastructure; Hypervisor Domain
- [5]ETSI NFV; Infrastructure; Network Domain
- · [6]ETSI NFV; Management and Orchestration
- [7] ETSI NFV; Infrastructure; Compute Domain
- [8] ETSI NFV; Virtual Network Function Architecture
- [9]ETSI NFV; NFV Performance & Portability Best Practices
- [10] ETSI NFV; Service Quality Metric

