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Problem Description

_

Given
Network topology
Capacity of link
Set of DC locations
Set of NFV-capable nodes (in addition to the DC)
Traffic flows between source-destination pairs
Set of k-shortest paths between source-destination pairs
Set of required network functions (for the service chain)
The service chain to be deployed
Number of CPU cores present per NFV-capable node

Objective
Minimize the bandwidth consumption in the network by optimal
placement of the VNFs.

[4]A. Gupta et al., “Joint Virtual Network Function Placement and Routing of Traffic in 6
Operator Networks,” Technical Report, UC Davis



Continued...

Constraints
Single-path routing
Capacity constraint for a link (bandwidth)
Capacity constraint for a node (CPU cores)
VNF sequence in the service chain (across nodes)
VNF sequence in the service chain (inside a node)

[4]A. Gupta et al., “Joint Virtual Network Function Placement and Routing of Traffic in
Operator Networks,” Technical Report, UC Davis 7



Integer Linear Program

Objective: Minimize Network
Resource Consumption

Single-path routing constraint

Capacity constraint for link

Capacity constraint for node

VNF sequence in the service chain

VNF sequence in the service chain
(inside a node)
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CPU-core-to-throughput relationship of a VNF
I

. Throughput
Applications
1 Gbps 5 Gbps 10 Gbps
NAT 1 CPU 1 CPU 2 CPUs
IPsec VPN 1 CPU 2 CPUs 4 CPUs
Traffic Shaper 1 CPU 8 CPUs 16 CPUs

[3]Cisco, “Cisco Cloud Services Router 1000V 3.14 Series Data Sheet,”2015. 9



VNF placement (on throughput and CPU cores)
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Service Chaining Strategies

MB only - Middle box (MB) used for service chaining

DC only (Centralized) - Data center (DC) used for service
chaining

DC NFV x (Best-Case scenario)- Data center (DC) and ‘X’
NFV-capable nodes used for service chaining. DC NFV
ALL’ refers to situation where all network nodes are NFV-
capable.

ALL NFV (Completely Distributed) - A completely
distributed strategy where all nodes are NFV-capable and
there is no DC.

11



Simulation details
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Normalized Network Resource
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Inflection Point (DC NFV ALL)
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Inflection points (DC NFV ALL)
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ALL NFV (Completely-Distributed) vs DC NFV ALL
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ALL NFV infeasible for these CPU core counts at 2.5 Gbps
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We formulated an optimization problem for the VNF
placement and routing problem for service chain
deployment by network operators.

We defined different service chaining strategies and
analyzed the network resource consumption across these
strategies for different CPU core counts and traffic bales.

We found that by determining the “inflection point” for core
count and offered traffic, we can achieve close-to-optimal

network resource consumption and reduce it by close to
50%.

27



Congestion aspect : In ‘DC-only’ strategy, all flows have to
routed through a single node which will lead to congestion

at DC nodes.

Congestion at DC nodes can be shown through the infeasibility of
certain nodes to be DC in the ‘DC-only’ scenario in our ILP.

This infeasibility will occur at different traffic loads for different
nodes in the network.

Load-balancing (Resource-contention?) aspect : NFV-
capable nodes help reduce the congestion problem on the
single DC node and reduce the operating expenditure for

the network operator.

Change in network resource between ‘DC-only’, ‘DC NFV 4’ and ‘DC
NFV ALL’ for low, high and infeasible traffic loads for a particular

traffic matrix

28



Network Topology (Internet2)
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Network Topology (Geant)
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Congestion point calculation
Nodal degree * capacity < total flows in the network

Number of paths that include that node for each sd-pair that satisfy
the capacity constraints

Some anomalies can be explained when the traffic flows terminate at a
certain source or destination.

NSF 14
For each of the Internet2, Geant

Traffic | Nodes Traffic Infeasible DC Nodes
1 Gbps | None T™M1 T™M2 | TM3
2.5 Gbps |1,2 1 Gbps None
5 Gbps 4,5,6,7 2.5 Gbps 1,2
7.5 Gbps |11,12,13 5 Gbps 4,5,6,7
14 7.5 Gbps 11,12,13,14
10 Gbps | 3,8,10 10 Gbps 3,8,10

31
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Congestion in DC-only
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Traffic Matrix? (TMx)
.

3 traffic matrices for each topology.

Each traffic matrix will have 3 traffic loads.
Low, high and infeasible loads.

Infeasible load : traffic load at which ‘DC-only’ strategy is infeasible
for all nodes in the network topology.

33



TM’s for Internet 2
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Load balancing aspect of an NeC
.
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Memory is more important than CPU core count

Will be run on NSF 14 itself

Memory requirement only there for initial installation
(Inelastic)

Memory requirement scales with increasing traffic (elastic)
How to map the memory requirements of each of the
VNF’s?

Make it uniform like 1 GB for each or map mimicking the
CPU core assigned to each VNF

37
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DC NFV ALL - memory based VNF characteristics
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Ongoing Work
L

A column-generation based optimization model for the
current problem (in collaboration with Prof. Brigitte Jaumard, Concordia
University, Montreal)

Model will scale to provide placement of VNFs for multiple service
chains

More problem context like latency of VNFs, maximum number of VNF
instances that can be deployed etc. will also be included

In the problem definition stage for the next problem,

“Towards a service-oriented virtual evolved packet core”,
joint placement of VNFs for EPC functionalities and service chains deployed in
the SGi-LAN (Service Gateway interface LAN)

41



Open Research Problems

Service chain composition (formalize a request for chaining VNFs
together)

Deployment of VNF service chains in Multi-Domain
environments

Virtualization of the mobile core
EPC
SGi-LAN
IMS for VOLTE and video

[TO]W. John et al., “Research Directions in Network Service Chaining,” 2013 IEEE SDN 42
for Future Networks and Services (SDN4FNS)
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