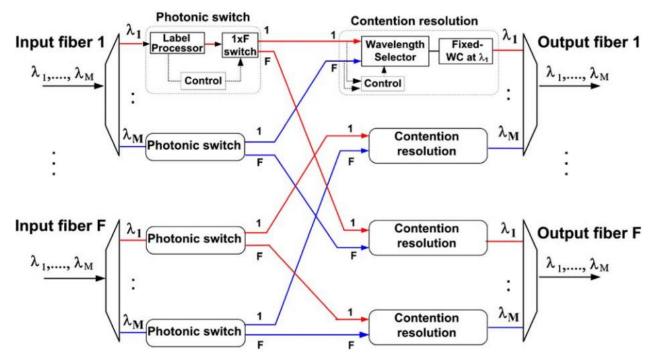
On the Performance of a Large-Scale Optical Packet Switch Under Realistic Data Center Traffic

Speaker: Lin Wang

Research Advisor: Biswanath Mukherjee

- Switch architectures and control
- Traffic generation
- · Simulation set up
- Results evaluation
- PSON architecture

Calabretta, Nicola, et al. "On the performance of a large-scale optical packet switch under realistic data center traffic," *Journal of Optical Communications and Networking* vol. 5, num. 6, pp.:565-573, 2013.


Switch architecture

- Wavelength-division multiplexing Optical packet switching (WDM OPS) is based on a strictly nonblocking Spanke-type architecture.
- No centralized control increase the scalability.

Block diagram of the OPS architecture

- WDM OPS architecture with distributed control.
- Input ports is N=F*M.
- Assume the distance between clusters and OPS is 50m.
- Photonic switch has a local control and a paralleled 1*F switch.
- Contention resolution block (CRB) has a F*1 wavelength-selector (WS).

OPS processing

- Contentions occur only between the F input ports of each F*1 WS.
- Optical packet:
 - Payload carries real data.
 - ✤ Optical label shows the destination.

each F*1 WS. Input fiber F $\lambda_{1,....,\lambda_{M}}$ λ_{M} Photonic switch F $\lambda_{1,....,\lambda_{M}}$ λ_{M} Photonic switch F $\lambda_{1,....,\lambda_{M}}$ λ_{M} Contention λ_{1} Output fiber F $\lambda_{1,....,\lambda_{M}}$

Contention resolution

Wavelength

Selector

Control

A1N

Fixed-

WC at λ_1

Output fiber 1

 $\lambda_1, \dots, \lambda_M$

Photonic switch

Control

1xF

λ₁ Label

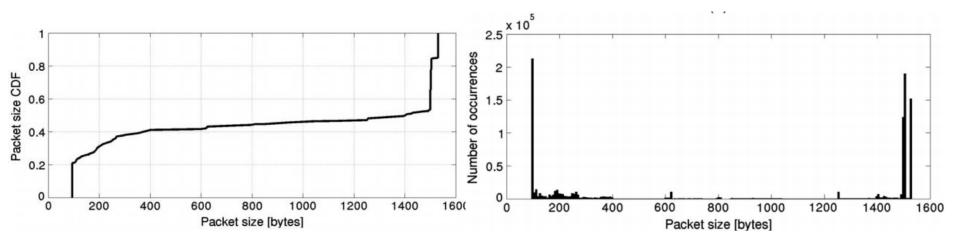
Input fiber 1

 $\lambda_1, \dots, \lambda_M$

- Label processor controls the 1*F switch to forward the optical packet to one of F output ports to CRB.
- CRB use M*1 WS and fixed wavelength converters (FWCs) to avoid collisions.
- Outputs of CRB switches reach the destination clusters by optical link.
- M WDM channels are detected by O/E converters at destination clusters.
- Optical packets are converted, buffered and forwarded to M TOR switches.
- Control complexity and configuration time mainly depend on label processing time.

Group meeting 09/16/2016

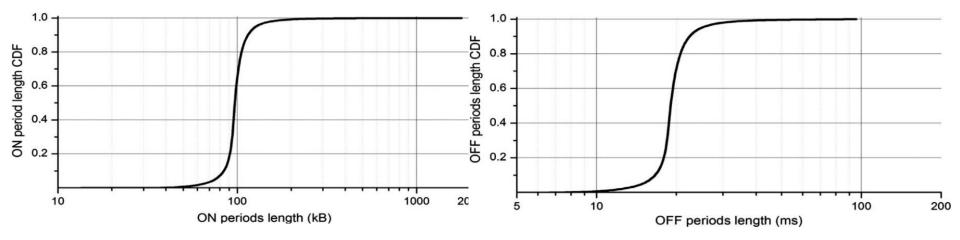
OPS processing


- 1. Packets are stored in electronic buffer.
- 2. A copy is sent to the OPS via a 50m optical link.
- 3. At OPS node
 - a. optical label is processed.
 - b. Photonic switch is reconfigured.
 - c. Forward the packet to the appropriate CRB.
- 4. At CRB
 - a. When packet arrives, check collision.
 - b. If no collision, forward it to output port connected with destination cluster.
 - c. If two or more packets coming from the same input fiber have the same destination and reach CRB simultaneously, collision happens.
 - d. Only one packet is delivered while others are abandoned.
- 5. At input node, only successfully delivered packets will be acknowledged and erased while others need retransmission.
- 6. If the input buffer is full, new packets will be dropped which leads to packet loss.

Traffic generation

- Each of the M wavelengths in each cluster receives the input traffic generated by 200 simulated servers.
- The amount of traffic load is normalized and can be scaled from 0 to 1.
- Packet length in real scenarios is mostly found to be a bimodal distribution around 40 bytes and 1500 bytes . [1]-[3]

[1] T. Benson, A. Anand, A. Akella, and M. Zhang, "Understanding data center traffic characteristics," Comput. Commun. Rev., vol. 40, no. 1, pp. 92–99, 2010.

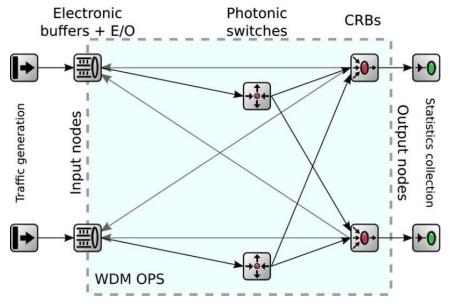

[2] T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics of data centers in the wild," in Proc. Internet Measurement Conf. (IMC), Melbourne, Australia, Nov. 2010, pp. 267–280.

[3] S. Kandula, S. Sengupta, A. Greenberg, A. Patel, and R. Chaiken, "The nature of datacenter traffic: measurements & analysis," in Proc. of the 9th ACM SIGCOMM Internet Measurement Conf. (IMC'09), 2009, pp. 202–208.

Traffic generation (Cont.)

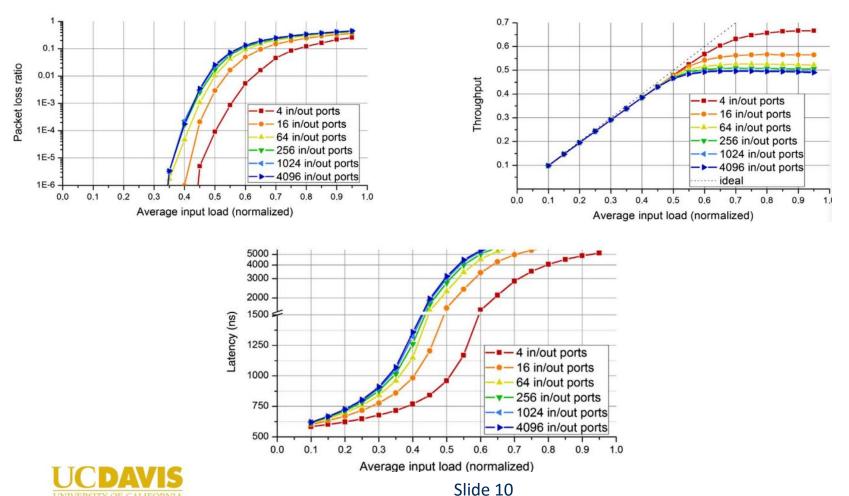
- Packet arrival times are modeled matching ON/OFF periods.
- ON/OFF periods follows Pareto distribution.
- ON periods follow the same length distribution regardless of load.
- OFF periods is proportional to the chosen simulation load value.

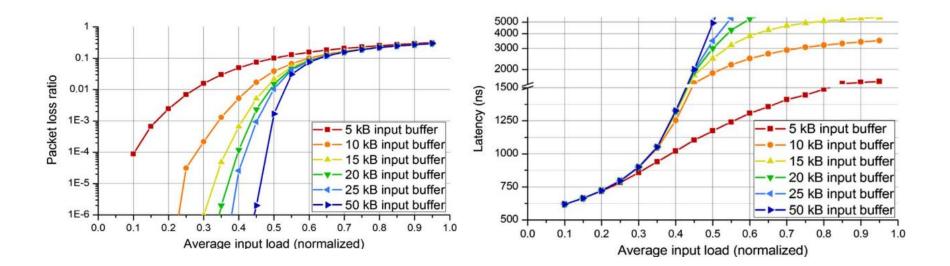
[1] T. Benson, A. Anand, A. Akella, and M. Zhang, "Understanding data center traffic characteristics," Comput. Commun. Rev., vol. 40, no. 1, pp. 92–99, 2010.


[2] T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics of data centers in the wild," in Proc. Internet Measurement Conf. (IMC), Melbourne, Australia, Nov. 2010, pp. 267–280.

[3] S. Kandula, S. Sengupta, A. Greenberg, A. Patel, and R. Chaiken, "The nature of datacenter traffic: measurements & analysis," in Proc. of the 9th ACM SIGCOMM Internet Measurement Conf. (IMC'09), 2009, pp. 202–208.

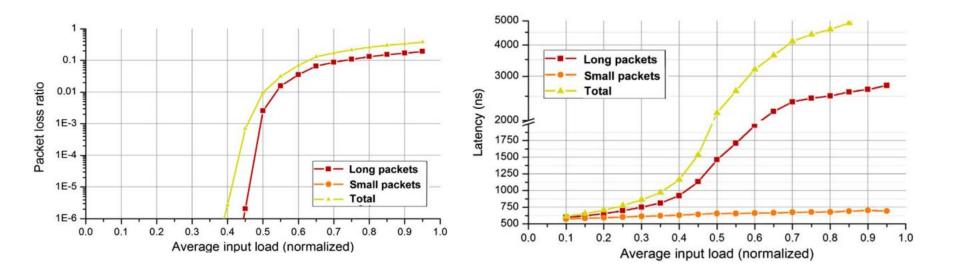
Simulation Sets


- Use OMNeT++ Network Simulation Framework Software.[4]
- Figure shows the block diagram after the architecture is implemented in the simulation software.
- Data rate is 40Gbit/s.
- M=F=32.
- Delay for optical modules, translates into an RTT is 560ns.

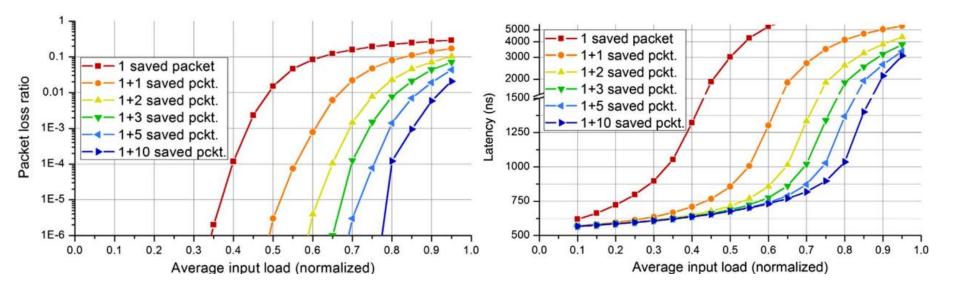

Simulation Results

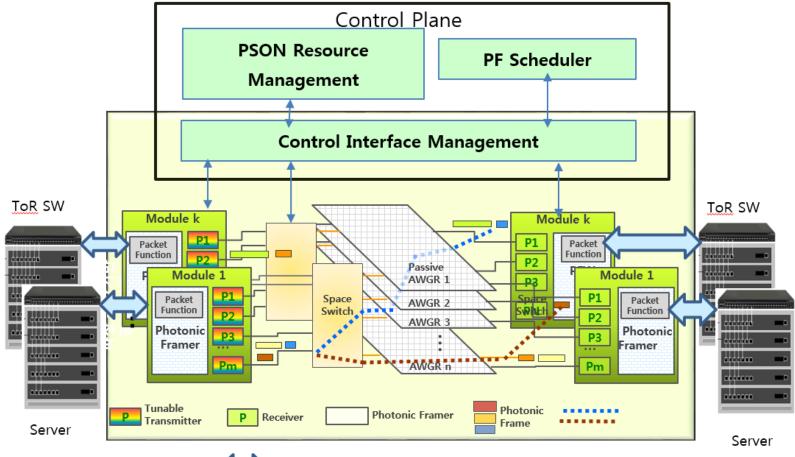
• Figures below show the effects of increasing number of ports.

Simulation Results


• Figures below show the effects of electrical buffers.

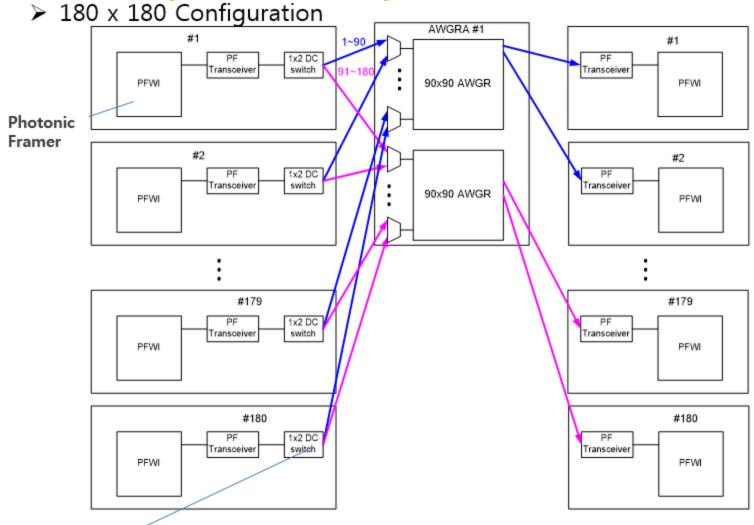
Improved OPS architecture


- As the packet length is a bimodal distribution around 40 and 1500 bytes, they propose to use two different OPSs.
- Diverge packets arriving to the clusters to two distinct buffers, one for short packets (5KB) and the other for long packets (15KB).


OPS Architecture With Multiple Receivers

- At the CRB, only one packet at a time can be saved and forwarded to the output. The other packets are simply retransmitted at a later time.
- Save more packets in case of contention by using multiple receivers at each output port of the OPS.

PSON Architecture


⇒ service ingress/egress point

A control plane manages tunable transmitters, photonic framers and space switches for data plane with optical switch fabrics (AWGR)

Group meeting 09/16/2016

PSON data plane (with optical switch fabric)

Space switch: Optical path switch to switch optical signal between module and AWGR at sub micro-second speed.

PSON architecture performance evaluation

• Scheduling algorithm design

Consider the space switch delay and transmitter tuning delay when we schedule the bandwidth resource to each module.

Performance Evaluation

- Effect of frame size
- Effect of buffer size
- Effect of in/out ports numbers

• Further work

- Improve the architecture.
- Evaluate the performance of modified architecture.

amlwang@ucdavis.edu