
Speaker: Xinbo Wang

Constraint Programming (CP)

and IBM CP Optimizer

Group meeting 01/21/2016

Outline

Slide 2

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

Outline

Slide 3

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is constraint programming?

 CP is an optimization technology which is

complementary to Mathematical programming (e.g. ILP)

taking a different approach to optimization, but sharing

similarities.

 It is a relatively new technology developed in the

computer science and artificial intelligence communities.

 It has found an important role in scheduling and highly

combinational problems (for ours).

Slide 4

Group meeting 01/21/2016

Applications

 Job shop scheduling

 Assembly line smoothing and balancing

 Cellular frequency assignment

 Airline crew rostering Nurse scheduling

 Shift planning

 Maintenance planning

 and scheduling

 Airport gate allocation and stand planning

 Production scheduling

 Transport scheduling

 Warehouse management

 Course timetabling

Slide 5

Group meeting 01/21/2016

How Constraint Programming Works?

Slide 6

Group meeting 01/21/2016

How Constraint Programming Works?

Slide 7

Group meeting 01/21/2016

Outline

Slide 8

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is Integer Linear Programming?

 An integer programming problem is a mathematical

optimization or feasibility program in which some or all of

the variables are restricted to be integers.

 The objective function and the constraints (other than the

integer constraints) are linear.

 Mixed integer linear programming (MILP) involves problems in

which only some of the variables are constrained to be integers,

while other variables are allowed to be non-integers.

 Zero-one linear programming involves problems in which the

variables are restricted to be either 0 or 1. Note that any

bounded integer variable can be expressed as a combination of

binary variables. For example, given an integer variable, x, the

variable can be expressed :

Slide 9

Group meeting 01/21/2016

Outline

Slide 10

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Linear Programming (ILP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

Comparison

• CP works with the same concepts as mathematical programming:

decision variables, objective function, and constraints.

• CP only discrete decision variables (integer or Boolean) vs

MP discrete and continuous decision variables.

• CP logical constraints and arithmetic expressions (modulo, integer

division, etc.) vs MP models only linear constraints or quadratic convex

constraints.

• CP no limitation on the arithmetic constraints that can be set on

decision variables vs MP specific to a class of problems whose

solution space satisfies certain mathematical properties.

• Each optimization engine uses different techniques and algorithms to

find feasible solutions and optimize them.

Slide 11

Group meeting 01/21/2016

A Tabular View

Slide 12

Group meeting 01/21/2016

Benefits of constraint programming

• Solve time tabling problems and sequencing problems.

• An alternative to mathematical programming for allocation

problems that have a slow convergence.

• Constraint programming has native support for:

 Nonlinear costs or constraints

 Logical constraints and statements

 Constraints on and between interval variables

 Compatibility or incompatibility constraints

 More useful features

Slide 13

Group meeting 01/21/2016

Expressions and Constraints

Slide 14

• Arithmetic constraints

 x + y, x – y, x * y, x / y, x div y, x % y

 min, max, abs, log, exp etc.

 Piecewise linear functions

• Relational constraints

 x == y, x != y, x <= y, x < y, lb <= x <= ub

• Logical constraints

 !c, c||d, c && d,

 c => d , c => d else e

 c and d are relational or conditional constraints

Group meeting 01/21/2016

Expressions and Constraints

• Reification

 Relational or logical constraints can be used in a value context,

where they evaluate to 0 or 1

• Examples

 Arithmetic: max(0, abs(load[i] - cap))

 Relational: wid * hei * depth * density <= maxLoad

 Logical: end[i] <= start[j] || start[j] <= end[i]

 Reification: spill == (load[i] > cap)

Slide 15

Group meeting 01/21/2016

Expressions and Constraints

• Count expression

 count(dvar int[] x, int c)

 Evaluates the number of variables in x with value c

 e.g. Count the number of nurses allocated to ward 5

 count(wardAllocation, 5) >= 3

• Element expression

 (int[] a)[dvar int x] OR (dvar int[] a)[dvar int x]

 Evaluates to the xth member of a

 e.g. travel == 2 * distFromPittsburgh[holidayTown]

 travel and holidayTown are variables

Slide 16

Group meeting 01/21/2016

Expressions and Constraints

• All Different

 allDifferent(dvar int[] x)

 All variables in x must take different values

 e.g. The rank (visit priority) of each city is different

 allDifferent(rankOfVisit)

• Allowed / Forbidden assignments

 allowedAssignments({<a,b,c>} A, dvar int[3] x)

 The assignments to x must fit with a tuple of A

 forbiddenAssignments is the negation of this

Slide 17

Group meeting 01/21/2016

Expressions and Constraints

• Bin packing constraint

 pack(dvar int[m] ld, dvar int[n]x, int[n] sz, dvar int c)

 ld[i] == sum(j) (x[j] == i) * sz[j]

 c is the number of containers used

• Inverse constraint

 inverse(dvar int[n] x, dvar int[n] y)

 x[i] == j <=> y[j] == i --- link primary and dual models

• Lexicographic ordering constraint

 lex(dvar int[n] x, dvar int[n] y) --- break symmetries

Slide 18

Group meeting 01/21/2016

Outline

Slide 19

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Linear Programming (ILP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is CP Optimizer

• A Constraint Programming engine with an emphasis on

modelling and automatic search

• Available as a toolkit in C++ , Java, .NET

 C++ is the native language and allows more possibilities, like

writing incremental custom constraints, and fully controlling the

search process

• Available as an engine inside ILOG OPL IDE

 ILOG: name of the company (acquired by IBM)

 OPL: optimization programming language

 Higher level modelling and data manipulation

Slide 20

Group meeting 01/21/2016

ILOG OPL IDE

Slide 21

Group meeting 01/21/2016

ILOG OPL IDE

Slide 22

Group meeting 01/21/2016

ILOG OPL IDE

Slide 23

Group meeting 01/21/2016

ILOG OPL IDE

Slide 24

Group meeting 01/21/2016

Overview of an CP Model using OPL

• Top

 Data manipulation and pre-processing

 declarative (expressions) and/or imperative (script)

 Variable declarations

• Middle

 Declarative model

 objective (optional) and constraints

• Bottom

 Post-processing of solutions

 Declarative (expressions) and/or imperative (script)

Slide 25

Group meeting 01/21/2016

An CP Model

Slide 26

Group meeting 01/21/2016

An CP Model

Slide 27

Group meeting 01/21/2016

An CP Model

Slide 28

Group meeting 01/21/2016

An CP Model

Slide 29

Group meeting 01/21/2016

Search in CP Optimizer

• Automatic search is emphasized

 Simpler, more maintainable, benefit from upgrades

• Search Phases

 What group of variables to assign first

 (optionally) define instantiation strategy

• Parameters

 Inference levels and search control parameters

• Problem still hard?

 Improve model

 Simplify or relax specification

 Decompose: CPLEX often useful here

Slide 30

Group meeting 01/21/2016

Typical Use of CP Optimizer

Slide 31

Group meeting 01/21/2016

xbwang@ucdavis.edu

