# Constraint Programming (CP) and IBM CP Optimizer

Speaker: Xinbo Wang



# Outline

- A glimpse of Constraint Programming (CP)
- A glimpse of Integer Mathematical Programming (MP)
  - Comparison of CP and MP
- $\cdot~$  A brief introduction of IBM CP optimizer



•

# Outline

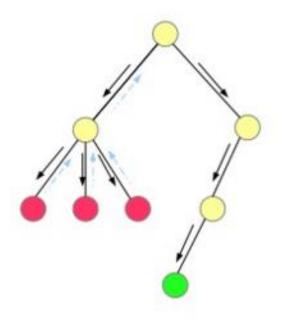
- A glimpse of Constraint Programming (CP)
- A glimpse of Integer Mathematical Programming (MP)
- Comparison of CP and MP
- $\cdot~$  A brief introduction of IBM CP optimizer



### What is constraint programming?

- CP is an optimization technology which is complementary to Mathematical programming (e.g. ILP) taking a different approach to optimization, but sharing similarities.
- It is a relatively new technology developed in the computer science and artificial intelligence communities.
- It has found an important role in scheduling and highly combinational problems (for ours).

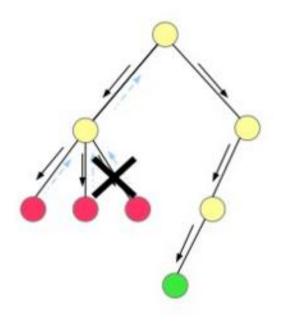



### **Applications**

- Job shop scheduling
- Assembly line smoothing and balancing
- Cellular frequency assignment
- Airline crew rostering Nurse scheduling
- Shift planning
- Maintenance planning
- and scheduling
- Airport gate allocation and stand planning
- Production scheduling
- Transport scheduling
- Warehouse management
- Course timetabling



### **How Constraint Programming Works?**


- CP is a constructive approach
- Values are assigned to variables one at a time to extend a partial solution to a complete solution
- At a point, it may be useless to further extend a partial solution as at least one constraint is already violated by the partial solution
  - The solver backtracks and tries a different value for a previously assigned variable
  - All possible assignments of values to variables can be examined in this way





### **How Constraint Programming Works?**

- In CP, the basic search behaviour is tree search
- Including search space reduction via domain filtering
- Domain filtering
  - Before each value-variable assignment, *domain filtering* occurs
  - Each value of a variable which cannot be used in a solution (given the current partial assignment) can be removed
  - Each constraint type has a specialized algorithm which filters domains





# Outline

- A glimpse of Constraint Programming (CP)
- A glimpse of Integer Mathematical Programming (MP)
- Comparison of CP and MP
- $\cdot~$  A brief introduction of IBM CP optimizer



### What is Integer Linear Programming?

 An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.

 $x_i$ 

- The objective function and the constraints (other than the integer constraints) are linear.
- Mixed integer linear programming (MILP) involves problems in which only some of the variables are constrained to be integers, while other variables are allowed to be non-integers.
- Zero-one linear programming involves problems in which the variables are restricted to be either 0 or 1. Note that any bounded integer variable can be expressed as a combination of binary variables. For example, given an integer variable, x, the variable can be expressed :

$$x = x_1 + 2x_2 + 4x_3 + \ldots + 2^{\lfloor \log_2 U \rfloor} x_{\lfloor \log_2 U \rfloor + 1}.$$



# Outline

- A glimpse of Constraint Programming (CP)
- A glimpse of Integer Linear Programming (ILP)
- Comparison of CP and MP
- $\cdot~$  A brief introduction of IBM CP optimizer



### Comparison

- CP works with the same concepts as mathematical programming: decision variables, objective function, and constraints.
- CP only discrete decision variables (integer or Boolean) vs
   MP discrete and continuous decision variables.
- CP logical constraints and arithmetic expressions (modulo, integer division, etc.) vs MP models only linear constraints or quadratic convex constraints.
  - CP no limitation on the arithmetic constraints that can be set on decision variables vs MP specific to a class of problems whose solution space satisfies certain mathematical properties.
  - Each optimization engine uses different techniques and algorithms to find feasible solutions and optimize them.



•

# **A Tabular View**

#### Constraint programming vs. mathematical programming

| Feature                 | MP                                                                                                                              | СР                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Relaxation              | Yes                                                                                                                             | No                           |
| GAP measure             | Yes                                                                                                                             | No                           |
| Optimality proof        | Yes                                                                                                                             | Yes                          |
| Modeling limitations    | Quadratic problems are limited to PSD<br>(Positive Semi Definite) problems and Second<br>Order Cone Programming (SOCP) problems | Discrete problems            |
| Specialized constraints | No                                                                                                                              | Yes                          |
| Logical constraints     | Yes                                                                                                                             | Yes                          |
| Theoretical grounds     | Algebra                                                                                                                         | Graph theory and algorithmic |
| Modeler support         | Yes                                                                                                                             | Yes                          |
| Model and run           | Yes                                                                                                                             | Yes                          |



### **Benefits of constraint programming**

- Solve time tabling problems and sequencing problems.
- An alternative to mathematical programming for allocation problems that have a slow convergence.
  - Constraint programming has native support for:
    - ✓ Nonlinear costs or constraints
    - ✓ Logical constraints and statements
    - ✓ Constraints on and between interval variables
    - Compatibility or incompatibility constraints
    - ✓ More useful features



٠

### Arithmetic constraints

- ✓ x + y, x − y, x \* y, x / y, x div y, x % y
- ✓ min, max, abs, log, exp etc.
- ✓ Piecewise linear functions
- **Relational constraints**

✓ x == y, x != y, x <= y, x < y, lb <= x <= ub</p>

- Logical constraints
  - ✓ !c, c||d, c && d,
  - $\checkmark$  c => d , c => d else e
  - ✓ c and d are relational or conditional constraints



•

٠

### · Reification

 Relational or logical constraints can be used in a value context, where they evaluate to 0 or 1

### Examples

٠

- ✓ Arithmetic: max(0, abs(load[i] cap))
- ✓ Relational: wid \* hei \* depth \* density <= maxLoad</p>
- ✓ Logical: end[i] <= start[j] || start[j] <= end[i]</pre>
- ✓ Reification: spill == (load[i] > cap)



### **Count expression**

٠

٠

- ✓ count(dvar int[] x, int c)
- $\checkmark$  Evaluates the number of variables in x with value c
- $\checkmark$  e.g. Count the number of nurses allocated to ward 5
  - count(wardAllocation, 5) >= 3

#### **Element expression**

- $\checkmark$  (int[] a)[dvar int x] OR (dvar int[] a)[dvar int x]
- $\checkmark$  Evaluates to the xth member of a
- e.g. travel == 2 \* distFromPittsburgh[holidayTown]
- ✓ travel and holidayTown are variables



### · All Different

- ✓ allDifferent(dvar int[] x)
- ✓ All variables in x must take different values
- $\checkmark$  e.g. The rank (visit priority) of each city is different
  - allDifferent(rankOfVisit)

### Allowed / Forbidden assignments

- allowedAssignments({<a,b,c>} A, dvar int[3] x)
- $\checkmark$  The assignments to x must fit with a tuple of A
- ✓ forbiddenAssignments is the negation of this



•

٠

٠

٠

### **Expressions and Constraints**

### Bin packing constraint

- ✓ pack(dvar int[m] ld, dvar int[n]x, int[n] sz, dvar int c)
- ✓ Id[i] == sum(j) (x[j] == i) \* sz[j]
  - c is the number of containers used

#### Inverse constraint

- inverse(dvar int[n] x, dvar int[n] y)
- $\checkmark$  x[i] == j <=> y[j] == i --- link primary and dual models
- Lexicographic ordering constraint
  - ✓ lex(dvar int[n] x, dvar int[n] y) --- break symmetries



# Outline

- A glimpse of Constraint Programming (CP)
- A glimpse of Integer Linear Programming (ILP)
- Comparison of CP and MP
- A brief introduction of IBM CP optimizer



### What is CP Optimizer

- A Constraint Programming engine with an emphasis on modelling and automatic search
- Available as a toolkit in C++ , Java, .NET
  - C++ is the native language and allows more possibilities, like writing incremental custom constraints, and fully controlling the search process
- Available as an engine inside ILOG OPL IDE
  - ✓ ILOG: name of the company (acquired by IBM)
  - ✓ OPL: optimization programming language
  - ✓ Higher level modelling and data manipulation



| 🛊 ILOG OPL Development Studio IDF |                           |
|-----------------------------------|---------------------------|
| Efe Edit Search Bun Window Help   | <b>∆</b> ⇔ ⇔ <b>∂</b> = € |
| Welcome to the OPL IDE            | F                         |
| ý <u>s</u> 8                      |                           |
|                                   |                           |
|                                   | 00:00:00                  |



| ILOG OPL Development Studio I<br>Ele Edt Search Run Window Help |          |                                              | nn Lass d                        | <i>A</i> -                             |                         |             |            |
|-----------------------------------------------------------------|----------|----------------------------------------------|----------------------------------|----------------------------------------|-------------------------|-------------|------------|
|                                                                 |          | t =<br>of mo<br>of dat<br>of sett<br>files ( | del fi<br>a file<br>ings<br>(e.g | les (.<br>s (.da<br>files (<br>xls fil | t)<br>(.ops)<br>es ···) | E Outline 😫 |            |
| Problems 🕴 🗐 Scripting log 💡                                    | Solomana | []                                           |                                  | -                                      |                         |             | ~          |
| 0 Rems<br>Description A                                         | Resource | Path                                         | Locat                            | Туре                                   |                         |             |            |
|                                                                 |          |                                              |                                  |                                        |                         |             |            |
| 0 items selected                                                |          |                                              |                                  |                                        |                         |             | 00:00:00:0 |



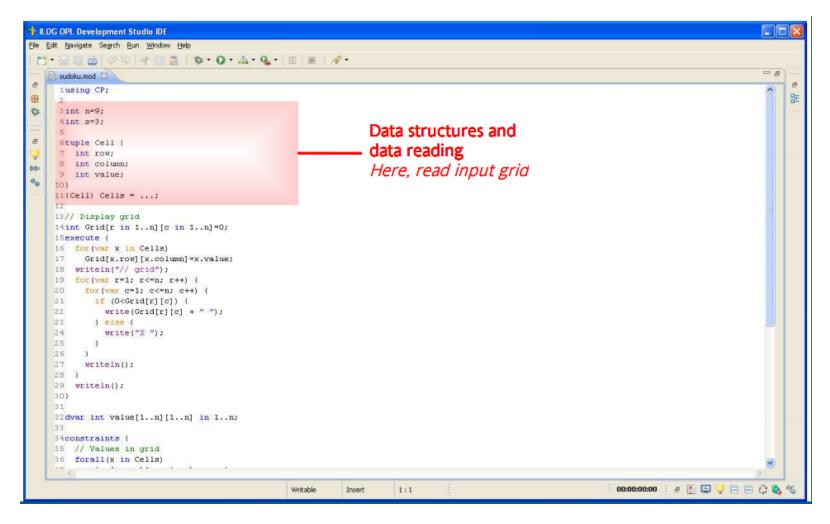
| <pre>besid:suddu(suddu)     iusing CP;     int n=9;     int n=0;     grd2.det     g</pre> | ile Edit Navigate Search Run Window                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <u>H</u> elp                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <pre>Water Evaluation (Cluster)     turning CP;     turning CP</pre> | 1-1000 × 10                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 · \$ · 0                                                                              | • 🎄 • 💁 • 🔟 🖩 🛛 🛷 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| <pre>2<br/>2<br/>2<br/>2<br/>3<br/>3<br/>4<br/>3<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 🗄 OPL Projects 🕄 🌾 Debug 🗧                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 🗟 sudoku.mod 🗵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0                                                                        | E Outline 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a_ = [ |
| Description + Resource Path Locat Type - Script for pre- and post-processing - use Help-> Dynamic Help for information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Run Configurations       gidbluumod       gidbluumod       gidbluumod       gidbluumod       gidbluumod       gidbluumod       gidbluumod       gidbluumod       gidbluumod       EXAMPLE sched_altro (Resource Alloc       EXAMPLE sched_bridge (Schedule the       EXAMPLE sched_bridge (Schedule the       Problem br     04* Variables       Problem br     04* Variables       Dota     Decision variables       Dota     Decision variables       Property     10 | Vanagement<br>construction o<br>cidea construction o<br>cidea construction<br>eakpoints | <pre>2 3 int n=9; 4 int s=3; 5 6 tuple Cell { 7 int row; 8 int column; 9 int value; 10) 11(Cell) Cells =; 12 13// Display grid 14 int Grid[r in 1n][c in 1n 15 execute { 16 for(var x in Cells) 17 Grid[x.row][x.column]=x.v 18 writeln("// grid"); 19 for(var r=1; r&lt;=n; r++) { 20 for(var r=1; r&lt;=n; r++) { 21 if (0<grid[r][c]) "="" +="" 22="" 23="" 44="" 44<="" td="" write(grid[r][c])="" {=""><td>- data manipulation:<br/>- data manipulation<br/>- expression<br/>- objective</td><td>Data (4)     O Cells     O' Cell     O Cell     O</td><td>)</td></grid[r][c])></pre> | - data manipulation:<br>- data manipulation<br>- expression<br>- objective | Data (4)     O Cells     O' Cell     O | )      |
| post-processing<br>- use Help-> Dynamic<br>Help for information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - script for pre- and                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| on hey horas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description *                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Resource                                                                                | Path Locat Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | post-processing<br>- use Help-> Dynan                                      | nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |



| e Edit Navigate Search Run Window                                                                                                | w Help               |                                                                         |            |          |                   |     |     |     |           |     |   |    |                              |          |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|------------|----------|-------------------|-----|-----|-----|-----------|-----|---|----|------------------------------|----------|
|                                                                                                                                  |                      |                                                                         | In the     |          |                   |     |     |     |           |     |   |    |                              |          |
|                                                                                                                                  |                      |                                                                         | grid1.dat  | -        |                   |     |     |     |           |     |   | -  | E Outline 😫                  | -        |
| BASICS sudoku (Sudoku)     BASICS sudoku (Sudoku)     Begenetations     Sudoku.mod     Sudoku.ops                                |                      | 1<br>2Cells = {<br>3 <1,1,5>,<br>4 <1,2,3>,                             |            |          |                   |     |     |     |           | _   |   | Î  | An outline is not available. |          |
| gridt.dat<br>grid2.dat<br>EXAMPLE sched_alloc (Resource Alloc                                                                    | ation for House      | 5 <1,5,7>,<br>6 <2,1,6>,<br>7 <2,4,1>,                                  |            |          | 5 3               |     | 1 9 | 5   |           |     |   |    |                              |          |
| E 🔐 EXAMPLE sched_atfm (Air Traffic Flow<br>E 🤐 EXAMPLE sched_bridge (Schedule the                                               | v Management         | 8 <2,5,9>,                                                              |            |          | 9                 | 8   | _   |     | $\square$ | 6   |   |    |                              |          |
| EXAMPLE sched_bridge (Schedule the                                                                                               |                      | 9 <2,6,5>,<br>10 <3,2,9>,                                               |            |          | 8                 | +   | 6   |     | $\square$ | 3   |   |    |                              |          |
| Problem br 🙁 🕅 Variables 🗣 Br                                                                                                    |                      | 11 <3,3,8>,<br>12 <3,8,6>,                                              |            |          | 4                 | +   | 8 2 | 3   | $\vdash$  | 1   |   |    |                              |          |
|                                                                                                                                  | × [a] ~              | 13 <4,1,8>,<br>14 <4,5,6>,<br>15 <4,9,3>,                               |            |          | Ē                 | 5   |     |     | 2         | 8   | 1 |    |                              |          |
| Name Value                                                                                                                       | ^                    | 16 <5,1,4>,<br>17 <5,4,8>,                                              |            |          | $\vdash$          | +   | 4 1 | . 9 | $\vdash$  | 5   |   |    |                              |          |
| Dota     Dota     Decision variables     Decision expressions     Proceeding     Constraints     Procencessing data     Property | Value                | 18 <5,6,3>,<br>19 <5,9,1>,<br>20 <6,1,7>,<br>21 <6,5,2>,<br>22 <6,9,6>, |            |          |                   |     | 8   | 5   |           | 7 9 | 1 |    |                              |          |
| Problems 🕄 📮 Scripting log 💡 Sc                                                                                                  | olutions 🖻 Conflicts | Relaxations                                                             | Engine log | Data     | file              | 2:  |     |     |           |     |   |    |                              | ⊽ □      |
| items<br>Description 🔺                                                                                                           | Resource             | Path                                                                    | Locat      |          | kpli              |     |     |     |           |     |   |    |                              |          |
|                                                                                                                                  |                      |                                                                         |            | *        | onn<br>dat<br>Exc | aba | se  | S   |           | eet | s |    |                              |          |
| 1 items selected                                                                                                                 |                      |                                                                         |            | <u> </u> |                   |     |     | _   | _         |     |   | e. |                              | 00:00:00 |



## **Overview of an CP Model using OPL**


### · Top

- ✓ Data manipulation and pre-processing
  - declarative (expressions) and/or imperative (script)
- ✓ Variable declarations
- · Middle
  - ✓ Declarative model
    - objective (optional) and constraints
- Bottom
  - ✓ Post-processing of solutions
  - ✓ Declarative (expressions) and/or imperative (script)



| IG OPL Development Studio IDE                                                                 |               |        |               |          |                 |
|-----------------------------------------------------------------------------------------------|---------------|--------|---------------|----------|-----------------|
| dit <u>N</u> avigate Se <u>a</u> rch <u>R</u> un <u>W</u> indow <u>H</u> elp                  |               |        |               |          |                 |
| ・ 🗟 🙆 ダ 🌾 🗟 💼 🛯 🎄 • 🔘 • 🏯 •                                                                   | Q. • 00 🖩 i 🦂 | 8 -    |               |          |                 |
| 🖹 sudoku.mod 🖾                                                                                |               |        |               |          | - 8             |
| lusing CP;                                                                                    |               |        |               |          | ~               |
| 2                                                                                             |               |        |               |          |                 |
| 3 int n=9;                                                                                    |               |        |               |          |                 |
| 4int s=3;                                                                                     |               |        |               |          |                 |
| 5                                                                                             | N 1           | CP Op  | timizer model |          |                 |
| 6tuple Cell (                                                                                 |               | Ci Op  |               |          |                 |
| 7 int row;                                                                                    |               |        |               |          |                 |
| 8 int column;                                                                                 |               |        |               |          |                 |
| 9 int value;                                                                                  |               |        |               |          |                 |
| 10)                                                                                           |               |        |               |          |                 |
| 11(Cell) Cells =;                                                                             |               |        |               |          |                 |
| 12                                                                                            |               |        |               |          |                 |
| 13// Display grid                                                                             |               |        |               |          |                 |
| 14int Grid[r in 1n][c in 1n]=0;                                                               |               |        |               |          |                 |
| 15execute (                                                                                   |               |        |               |          |                 |
| 16 for (var x in Cells)                                                                       |               |        |               |          |                 |
| <pre>17 Grid[x.row][x.column]=x.value;</pre>                                                  |               |        |               |          |                 |
| <pre>18 writeln("// grid");</pre>                                                             |               |        |               |          |                 |
| 19 for (var r=1; r<=n; r++) {                                                                 |               |        |               |          |                 |
| <pre>20 for (var c=1; c&lt;=n; c++) {</pre>                                                   |               |        |               |          |                 |
| 21 if (O <grid[r][c]) td="" {<=""><td></td><td></td><td></td><td></td><td></td></grid[r][c])> |               |        |               |          |                 |
| <pre>22 write(Grid[r][c] + " ");</pre>                                                        |               |        |               |          |                 |
| 23 ) else (                                                                                   |               |        |               |          |                 |
| 24 write("X ");                                                                               |               |        |               |          |                 |
| 25 }                                                                                          |               |        |               |          |                 |
| 26 }                                                                                          |               |        |               |          |                 |
| <pre>27 writeln();</pre>                                                                      |               |        |               |          |                 |
| 28 )                                                                                          |               |        |               |          |                 |
| <pre>29 writeln();</pre>                                                                      |               |        |               |          |                 |
| 30}                                                                                           |               |        |               |          |                 |
| 31                                                                                            |               |        |               |          |                 |
| 32dvar int value[1n][1n] in 1n;                                                               |               |        |               |          |                 |
| 33                                                                                            |               |        |               |          |                 |
| 34constraints {                                                                               |               |        |               |          |                 |
| 35 // Values in grid                                                                          |               |        |               |          |                 |
| 36 forall(x in Cells)                                                                         |               |        |               |          | ~               |
|                                                                                               |               |        |               |          | 5               |
|                                                                                               | Writable      | Insert | 1:1           | 00:00:00 | e 🗄 🚍 🖓 🖻 🖨 🗘 🗞 |



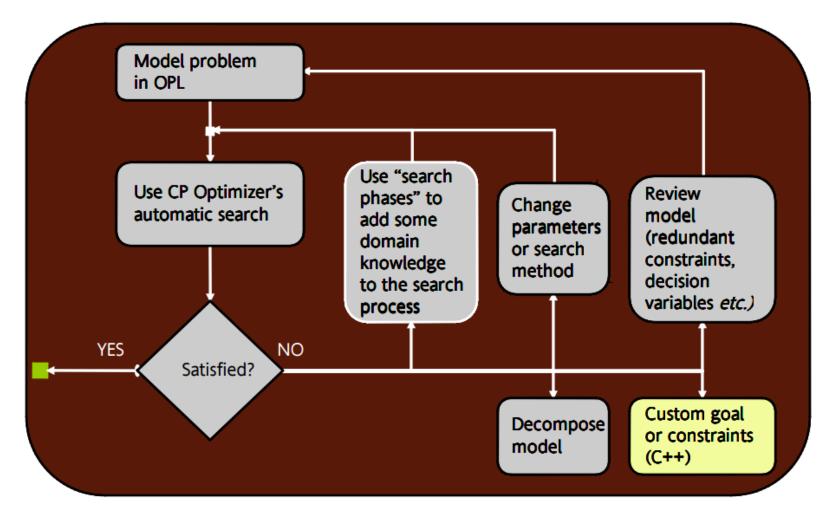




| <pre></pre>                                                                                                                                                            |                                                                    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---|
| <pre>31 32 33 34 33 34 constraints { 35 34 35 34 35 34 35 34 35 35 35 36 36 36 37 37 38 38 39 39 39 39 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>           | Model:<br>-Variables<br>-Expressions<br>-Objective<br>-Constraints | н |
| <pre>46 49// Display solution S0execute ( 51 for(var r=1; r&lt;=n; r++) ( 52 for(var c=1; c&lt;=n; c++) 53 write(value[r][c] + " "); 54 writeln(); 55 ) 56); 57 </pre> |                                                                    | * |



| LOG OPL Development Studio IDE                                                             |                             |                                 |
|--------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|
| ijle <u>E</u> dit <u>N</u> avigate Se <u>a</u> rch <u>R</u> un <u>W</u> indow <u>H</u> elp |                             |                                 |
| 🗂 • 🔄 🖓 😂 🛷 🖓 🕼 👔 🔅 🏇 • Q • 🎄 • 🗛 • 💷 🔳 🖗 •                                                |                             |                                 |
| ···· 📄 sudoku.mod 🙁                                                                        |                             | - a .                           |
|                                                                                            |                             | A 1                             |
| <pre>22 write(Grid[r][c] + " "); 23 ) else (</pre>                                         |                             |                                 |
| 拳 24 write("X ");                                                                          |                             |                                 |
| 25 )                                                                                       |                             |                                 |
| 26 )                                                                                       |                             |                                 |
| 27 writeln();                                                                              |                             |                                 |
| 28)                                                                                        |                             |                                 |
| <pre>bd= 29 writeln();</pre>                                                               |                             |                                 |
| <b>9</b> 31                                                                                |                             |                                 |
| 32 dvar int value[1n][1n] in 1n;                                                           |                             |                                 |
| 33                                                                                         |                             |                                 |
| 34constraints (                                                                            |                             |                                 |
| 35 // Values in grid                                                                       |                             |                                 |
| 36 forall(x in Cells)                                                                      |                             |                                 |
| <pre>37 value[x.rov][x.column]==x.value;<br/>38 // All different in a line</pre>           |                             |                                 |
| 39 forall(r in 1n)                                                                         |                             |                                 |
| <pre>40 allDifferent(all(c in 1n) value[r][c]);</pre>                                      |                             |                                 |
| 41 // All different in a column                                                            |                             |                                 |
| 42 forall(c in 1n)                                                                         |                             |                                 |
| 43 allDifferent(all(r in 1n) value[r][c]);                                                 |                             |                                 |
| 44 // All different in a square<br>45 forall(sr in 1s, sc in 1s)                           |                             |                                 |
| 46 allDifferent(all(r in 1+s*(sr-1)s*sr, c in 1+s*(sc-1                                    | ).,s*sc) value[r][c]);      | =                               |
| 47)                                                                                        |                             |                                 |
| 48                                                                                         |                             |                                 |
| 49// Display solution                                                                      |                             |                                 |
| 50execute (                                                                                |                             |                                 |
| 51 for (var r=1; r<=n; r++) {                                                              | Postprocessing              |                                 |
| 52 for(var c=1; c<=n; c++)<br>53 write(value[r][c] + " ");                                 |                             |                                 |
| 54 writeln();                                                                              | Here: display solution grid |                                 |
| 55 )                                                                                       |                             |                                 |
| 56);                                                                                       |                             |                                 |
| 57                                                                                         |                             | <u>×</u>                        |
| <u>&lt;</u>                                                                                |                             | 2                               |
| Writable In                                                                                | isert 32:1                  | i 00:00:00:00   # 🖹 🚍 🍚 🖨 🚍 🛟 🍇 |




## **Search in CP Optimizer**

- Automatic search is emphasized
  - Simpler, more maintainable, benefit from upgrades
- Search Phases
  - ✓ What group of variables to assign first
  - ✓ (optionally) define instantiation strategy
- · Parameters
  - ✓ Inference levels and search control parameters
- Problem still hard?
  - ✓ Improve model
  - ✓ Simplify or relax specification

✓ Decompose: CPLEX often useful here Slide 30

# **Typical Use of CP Optimizer**







#### xbwang@ucdavis.edu

