
Speaker: Xinbo Wang

Constraint Programming (CP)

and IBM CP Optimizer

Group meeting 01/21/2016

Outline

Slide 2

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

Outline

Slide 3

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is constraint programming?

 CP is an optimization technology which is

complementary to Mathematical programming (e.g. ILP)

taking a different approach to optimization, but sharing

similarities.

 It is a relatively new technology developed in the

computer science and artificial intelligence communities.

 It has found an important role in scheduling and highly

combinational problems (for ours).

Slide 4

Group meeting 01/21/2016

Applications

 Job shop scheduling

 Assembly line smoothing and balancing

 Cellular frequency assignment

 Airline crew rostering Nurse scheduling

 Shift planning

 Maintenance planning

 and scheduling

 Airport gate allocation and stand planning

 Production scheduling

 Transport scheduling

 Warehouse management

 Course timetabling

Slide 5

Group meeting 01/21/2016

How Constraint Programming Works?

Slide 6

Group meeting 01/21/2016

How Constraint Programming Works?

Slide 7

Group meeting 01/21/2016

Outline

Slide 8

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Mathematical Programming (MP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is Integer Linear Programming?

 An integer programming problem is a mathematical

optimization or feasibility program in which some or all of

the variables are restricted to be integers.

 The objective function and the constraints (other than the

integer constraints) are linear.

 Mixed integer linear programming (MILP) involves problems in

which only some of the variables are constrained to be integers,

while other variables are allowed to be non-integers.

 Zero-one linear programming involves problems in which the

variables are restricted to be either 0 or 1. Note that any

bounded integer variable can be expressed as a combination of

binary variables. For example, given an integer variable, x, the

variable can be expressed :

Slide 9

Group meeting 01/21/2016

Outline

Slide 10

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Linear Programming (ILP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

Comparison

• CP works with the same concepts as mathematical programming:

decision variables, objective function, and constraints.

• CP only discrete decision variables (integer or Boolean) vs

MP discrete and continuous decision variables.

• CP logical constraints and arithmetic expressions (modulo, integer

division, etc.) vs MP models only linear constraints or quadratic convex

constraints.

• CP no limitation on the arithmetic constraints that can be set on

decision variables vs MP specific to a class of problems whose

solution space satisfies certain mathematical properties.

• Each optimization engine uses different techniques and algorithms to

find feasible solutions and optimize them.

Slide 11

Group meeting 01/21/2016

A Tabular View

Slide 12

Group meeting 01/21/2016

Benefits of constraint programming

• Solve time tabling problems and sequencing problems.

• An alternative to mathematical programming for allocation

problems that have a slow convergence.

• Constraint programming has native support for:

 Nonlinear costs or constraints

 Logical constraints and statements

 Constraints on and between interval variables

 Compatibility or incompatibility constraints

 More useful features

Slide 13

Group meeting 01/21/2016

Expressions and Constraints

Slide 14

• Arithmetic constraints

 x + y, x – y, x * y, x / y, x div y, x % y

 min, max, abs, log, exp etc.

 Piecewise linear functions

• Relational constraints

 x == y, x != y, x <= y, x < y, lb <= x <= ub

• Logical constraints

 !c, c||d, c && d,

 c => d , c => d else e

 c and d are relational or conditional constraints

Group meeting 01/21/2016

Expressions and Constraints

• Reification

 Relational or logical constraints can be used in a value context,

where they evaluate to 0 or 1

• Examples

 Arithmetic: max(0, abs(load[i] - cap))

 Relational: wid * hei * depth * density <= maxLoad

 Logical: end[i] <= start[j] || start[j] <= end[i]

 Reification: spill == (load[i] > cap)

Slide 15

Group meeting 01/21/2016

Expressions and Constraints

• Count expression

 count(dvar int[] x, int c)

 Evaluates the number of variables in x with value c

 e.g. Count the number of nurses allocated to ward 5

 count(wardAllocation, 5) >= 3

• Element expression

 (int[] a)[dvar int x] OR (dvar int[] a)[dvar int x]

 Evaluates to the xth member of a

 e.g. travel == 2 * distFromPittsburgh[holidayTown]

 travel and holidayTown are variables

Slide 16

Group meeting 01/21/2016

Expressions and Constraints

• All Different

 allDifferent(dvar int[] x)

 All variables in x must take different values

 e.g. The rank (visit priority) of each city is different

 allDifferent(rankOfVisit)

• Allowed / Forbidden assignments

 allowedAssignments({<a,b,c>} A, dvar int[3] x)

 The assignments to x must fit with a tuple of A

 forbiddenAssignments is the negation of this

Slide 17

Group meeting 01/21/2016

Expressions and Constraints

• Bin packing constraint

 pack(dvar int[m] ld, dvar int[n]x, int[n] sz, dvar int c)

 ld[i] == sum(j) (x[j] == i) * sz[j]

 c is the number of containers used

• Inverse constraint

 inverse(dvar int[n] x, dvar int[n] y)

 x[i] == j <=> y[j] == i --- link primary and dual models

• Lexicographic ordering constraint

 lex(dvar int[n] x, dvar int[n] y) --- break symmetries

Slide 18

Group meeting 01/21/2016

Outline

Slide 19

• A glimpse of Constraint Programming (CP)

• A glimpse of Integer Linear Programming (ILP)

• Comparison of CP and MP

• A brief introduction of IBM CP optimizer

Group meeting 01/21/2016

What is CP Optimizer

• A Constraint Programming engine with an emphasis on

modelling and automatic search

• Available as a toolkit in C++ , Java, .NET

 C++ is the native language and allows more possibilities, like

writing incremental custom constraints, and fully controlling the

search process

• Available as an engine inside ILOG OPL IDE

 ILOG: name of the company (acquired by IBM)

 OPL: optimization programming language

 Higher level modelling and data manipulation

Slide 20

Group meeting 01/21/2016

ILOG OPL IDE

Slide 21

Group meeting 01/21/2016

ILOG OPL IDE

Slide 22

Group meeting 01/21/2016

ILOG OPL IDE

Slide 23

Group meeting 01/21/2016

ILOG OPL IDE

Slide 24

Group meeting 01/21/2016

Overview of an CP Model using OPL

• Top

 Data manipulation and pre-processing

 declarative (expressions) and/or imperative (script)

 Variable declarations

• Middle

 Declarative model

 objective (optional) and constraints

• Bottom

 Post-processing of solutions

 Declarative (expressions) and/or imperative (script)

Slide 25

Group meeting 01/21/2016

An CP Model

Slide 26

Group meeting 01/21/2016

An CP Model

Slide 27

Group meeting 01/21/2016

An CP Model

Slide 28

Group meeting 01/21/2016

An CP Model

Slide 29

Group meeting 01/21/2016

Search in CP Optimizer

• Automatic search is emphasized

 Simpler, more maintainable, benefit from upgrades

• Search Phases

 What group of variables to assign first

 (optionally) define instantiation strategy

• Parameters

 Inference levels and search control parameters

• Problem still hard?

 Improve model

 Simplify or relax specification

 Decompose: CPLEX often useful here

Slide 30

Group meeting 01/21/2016

Typical Use of CP Optimizer

Slide 31

Group meeting 01/21/2016

xbwang@ucdavis.edu

