A Quantitative Approach to Design Low-cost Edge-CRAN

Speaker: Xinbo Wang

Advisor: Biswanath Mukherjee University of California, Davis

Cicek Cavdar KTH Royal Institute of Technology, Sweden

> Salah Eddine Orange Labs, France

Alberto Conte Alcatel-Lucent Bell Labs, France

Background

- 5G is happening
 - > 1000x more traffic
 - > 10x lower latency
 - \succ New ecosystem and value chain \rightarrow More revenue !
 - Cost and energy consumption should be affordable

Distributed Radio Access Network (DRAN)

• A base station (BS) at remote site

- A base station system = DUs + RUs + infrastructure
- In urban area, RUs are placed at "the top of a mast". DUs are placed at a "cabinet". Each RU is paired with one DU via fronthaul.
- > Infrastructure: air conditioners, lighting system, cabinet etc.

DRAN

Not a scalable solution for 5G

- Do not satisfy latency requirement for advanced radio coordination techniques, e.g. CoMP (among multiple BSs).
- > DUs are expensive resources, but cannot be shared.
- All DUs are placed at cabinet, which is not cost- and energyefficient.
 - > New frequency bands are licensed in 5G
 - > A remote site is densified with more RUs, and *thus more DUs*.
 - > Cost of cabinet increases dramatically.

Cloud Radio Access Network (CRAN) · CRAN

- > DUs are centralized at a central site, so cabinet is not needed.
- > DUs can be virtualized and shared as a "DU cloud".
- Multiplexing gain: on-demand resource allocation and infrastructure sharing.

DRAN

CRAN

- A too costly solution for some network operators.
 - Due to the DU centralization, all I/Q samples generated by RUs must be transported to central site.
 - A single RU, with a 20 MHz carrier and 2*2 antennas, will generate 2.5 Gbps I/Q samples in downstream.
 - Network operators need to build their own optical transport network, or rent bandwidth from a third-party fiber owner.
 - The cost of upgrading the backhaul to fronthaul may counteract the cost saving of CRAN.

Functional Split

• Reconsider CRAN.

- Functional split: several conceivable points to split the wireless baseband processing chain for dual-site processing.
- > Dual-site processing:
 - ✓ place some processing functions (PFs) at remote site for baseband pre-processing, relaxing bandwidth requirement.
 - ✓ If computational resources are general-purpose, innovative applications and services can be provided to users rapidly, e.g. mobile edge computing, fog computing, IoT etc.

GOPS: Giga Operations Per Second, indicating how much computational resources needed by a PF. **Midhaul**: transport network between remote site and central site, corresponding to the same network segment, backhaul and fronthaul, as in DRAN and CRAN, respectively

Edge-Cloud Radio Access Network (e-CRAN)

- A 4D (Dynamic) architecture:
 - Dynamic fronthaul topology
 - > Dynamic bandwidth provisioning.
 - > Dynamic function provisioning.
 - > Dynamic power provisioning.

Ok, now forget about 4D $\overline{\mathbb{G}}$

• Research problems:

- Is this architecture too costly?
- > What is the optimal functional split?
- How much computational resources to centralize or distribute?

Total cost of Ownership

The sum of the build-out costs, the so called capital expenditure (CAPEX), and the operation and maintenance costs, the so called operational expenditures (OPEX), for a given period of time.

TCO items	CAPEX	OPEX
Equipment (Eq)	\checkmark	×
Civil Work (CW)	\checkmark	×
Installation and Commissioning (IC)	\checkmark	×
Operation and Maintenance (OM)	×	\checkmark
Power Bill (PB)	×	\checkmark
Site Rental (SR)	×	\checkmark
Fiber Rental (FR)	×	

Group meeting 09/15/2016

TCO Minimization Problem TCO for a BS system in DRAN

- > T_i^{mast} : cost of TCO item *i* at the top of a mast ("mast" for short).
- *T_i^{cab}*: cost of TCO item *i* at cabinet ("cab" for short).
- > T_{FR}^{DRAN} : fiber rental cost for backhaul.
- $\succ T_{DRAN} = T_{FR}^{DRAN} + \sum_{i \in X} (T_i^{mast} + T_i^{cab})$

TCO for a BS system in CRAN

- > T_i^{mast} : the same as in DRAN.
- > T_i^{CS} : cost of TCO item *i* at central site ("CS" for short).

 $\checkmark T_i^{CS} = T_i^{cab} \cdot (1 - mg)$

- \checkmark *mg*: multiplexing gain
- > T_{FR}^{CRAN} : fiber rental cost for fronthaul.
 - $\checkmark T_{FR}^{CRAN} = T_{FR}^{DRAN} \cdot ml$
 - ✓ *ml*: multiplexing loss

 $\succ T_{CRAN} = T_{FR}^{CRAN} + \sum_{i \in X} (T_i^{mast} + T_i^{CS})$

Slide 15

• TCO for a BS system in e-CRAN

 \succ $T_{eCRAN} = T_{FR}^{eCRAN} + \sum_{i \in X} T_i^{eCRAN}$

- > Unscalable items:
 - TCO item whose cost is directly related to human power.
 - The cabinet cost should be fully counted as long as site visit happens.

 $\checkmark T_i^{eCRAN} = T_i^{mast} + T_i^{cab} + T_i^{CS}, \ i \in \{IC, CW, OM\}$

- > Scalable items:
 - ✓ TCO item whose cost is not (directly) related to human power.
 - Cabinet cost can be (linearly or non-linearly) scalable with computational resources placed at remote site.

$$\checkmark T_i^{eCRAN} = T_i^{mast} + T_i^{cab} \cdot \frac{h_{RS}}{H} + T_i^{CS} \cdot \frac{H - h_{RS}}{H}, \ i \in \{Eq, PB, SR\}$$

- ✓ h_{RS} : computational resources placed at remote site. *H* is total computational resources needed by a BS.
- $\checkmark T_{FR}^{eCRAN} = T_{FR}^{CRAN} \left(T_{FR}^{CRAN} T_{FR}^{DRAN}\right) \cdot \frac{B_{CRAN} b_{hRAN}}{B_{CRAN} B_{DRAN}}$
- ✓ b_{eCRAN} is midhaul bandwidth in e-CRAN.

TCO items	Scalable	Unscalable
Equipment (Eq)	\checkmark	×
Civil work (CW)	×	\checkmark
Install and		
commission (IC)	×	\checkmark
Operation and		
maintain (OM)	×	\checkmark
Power bill (PB)		×
Site rental (SR)	\checkmark	×
Fiber rental (FR)		×

- · Given
 - > C: a set of RU-DU pairs within a BS, with heterogeneous configurations

RU-DU Type	Spectrum band	Carrier Bandwidth (B)	Antennas (A)
Type1	2.6 GHz	20 MHz	8*8
Type2	1.8 GHz	10 MHz	4*4
Туре3	700 MHz	10 MHz	2*2
Type4	3.5 GHz	20 MHz	16*16

> $S = \{1,...,7\}$: a set of split options as depicted.

> $T_i^{mast}, T_i^{cab}, T_{FR}^{DRAN}$: cost of TCO item *i* in DRAN. TCO of CRAN can be calculated as described, when multiplexing gain and loss are given.

> $\mathcal{H}_{RS}^{up}[\cdot], \mathcal{H}_{RS}^{down}[\cdot]$: Mapping from a upstream/downstream split to computational resources placed at remote site.

> Functional split complexity (GOPS) sub-model [1].

[1] C. Desset, et al. "Flexible power modeling of LTE base stations," Proc. Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2012.

- · Given
 - > $\Gamma^{up}[\cdot], \Gamma^{down}[\cdot]$: mapping from a upstream/downstream split to required midhaul bandwidth.

> Functional split Bandwidth sub-model [2].

$$R_{1} = \alpha_{1} \cdot f_{S} \cdot A$$

$$R_{2} = \alpha_{2} \cdot f_{S} \cdot A$$

$$R_{3} = \alpha_{3} \cdot A \cdot n_{PRB}$$

$$R_{4} = \alpha_{4} \cdot L \cdot A \cdot n_{PRB} + \beta_{4} \cdot A$$

$$R_{5} = \alpha_{5} \cdot L \cdot n_{PRB} + \beta_{5}$$

$$R_{6} = \alpha_{6} \cdot L \cdot n_{PRB}$$

$$R_{7} = \alpha_{7} \cdot L \cdot n_{PRB}$$

[2] Small Cell Forum, "Functional splits and use cases for small cell virtualization." Jan. 2016.

• Decision variables

- \succ s_c^{up} : upstream split for RU-DU pair c.
- \succ s_c^{down} : downstream split for RU-DU pair c.
- > h_{RS} : total GOPS of the BS placed at a RS.
- > b_{hRAN} : total required midhaul bandwidth of the BS.
- Objective

 \blacktriangleright Minimize TCO of a BS in e-CRAN: $T_{eCRAN} = T_{FR}^{eCRAN} + \sum_{i \in X} T_i^{eCRAN}$

Constraints

the GOPS placed at RS is equal to the sum GOPS incurred by downstream and upstream splits of all RU-DU pairs within the BS

 $\checkmark h_{RS} = \sum_{c \in C} (\mathcal{H}_{RS}^{up} [s_c^{up}] + \mathcal{H}_{RS}^{down} [s_c^{down}])$

the required midhual bandwidth of the BS is equal to the sum bandwidth incurred by downstream and upstream splits of all RU-DU pairs.

$$\checkmark b_{hRAN} = \sum_{c \in C} (\Gamma^{Up} [s_c^{Up}] + \Gamma^{Down} [s_c^{Down}])$$

Simulation settings

- > We consider 6 different BS configurations, consisting of 4 RU-DU types.
- For example, Conf1 only has Type1 RU-DU pair, while Conf5 has all four types, with proportion: 1:1:1:10.
- For each configuration, we obtain the optimal (minimized) TCO of a BS system in e-CRAN, using IBM CP Optimizer. Each TCO value is unified by TCO of DRAN, which is fixed as 1.

RU-DU Type	Spectrum band	Carrier Bandwidth (B)	Antennas (A)
Type1	2.6 GHz	20 MHz	8*8
Туре2	1.8 GHz	10 MHz	4*4
Туре3	700 MHz	10 MHz	2*2
Type4	3.5 GHz	20 MHz	16*16

BS configuration	Type1	Type2	Туре3	Type4
Conf 1	::1	00	00	00
Conf 2	::1	::1	00	00
Conf 3	::1	::1	::1	00
Conf 4	::1	::1	::1	::1
Conf 5	::1	::1	::1	::10
Conf 6	::1	::1	::1	::20

- TCO for a BS system in e-CRAN
 - e-CRAN achieves lower TCO than DRAN and CRAN, up to 14.7%.
 - Where does the saving come from?
 - \checkmark Lower fiber rental cost than CRAN, thanks to dual-site processing.
 - \checkmark Lower costs of scalable items than DRAN.
 - Higher costs of unscalable items, which can counteract cost savings.
 - More cost saving in 5G BS configurations.

- Optimal splits for different BS configurations
 - Consistent optimal splits for Type1 and Type 4 RU-DU.
 - > RU-DU pairs in a BS may choose different functional splits.
 - Their split combination can approach to an equilibrium point with respect to computational resource placement and midhaul bandwidth requirement.
 - This equilibrium point can lead to a minimized TCO for e-CRAN. Consistent

Outimal Calita					
Da	T 1	Emilder	SDIHS	T 4	
BS	Type1	Type2	Type3	Type4	
configuration					
Conf 1	↓5, ↑3, ::1	8	∞	8] -
Conf 2	↓5, ↑3, ::1	↓5, ↑3, ::1	8	8] -
Conf 3	↓5, ↑3, ::1	↓5, ↑3, ::1	↓5, ↑6, ::1	8	Different split
Conf 4	↓5, ↑3, ::1	↓5, ↑6, ::1	↓5, ↑6, ::1	↓5, ↑3, ::1	combinations
Conf 5	↓5, ↑3, ::1	↓5, ↑6, ::1	↓6, ↑6, ::1	↓5, ↑3, ::10	
Conf 6	↓5, ↑3, ::1	↓5, ↑6, ::1	↓6, ↑6, ::1	↓5, ↑3, ::20	¶ _

↓ downstream functional split; ↑ upstream functional split.

:: proportion of a RU-DU type. For example, in e-CRAN5, the proportion

of 4 RU-DU configurations is 1:1:1:10, which means for every RU-DU pair

with Conf1, there are 10 RU-DU pairs with Conf4.

with Coller, there are to KO-DO pairs with Collig.

• Impact of fiber ownership on TCO and optimal splits

- > For a fiber-rich operator, CRAN is the best choice.
- For a fiber-short operator, e-CRAN can be an economical choice.
- The optimal split is dependent on fiber ownership.

Fiber ownership	Multiplexing loss	TCO CRAN	TCO e-CRAN	Optimal Split
	200%	0.7	0.75	$\downarrow 1, \uparrow 1$
	3600%	0.81	0.89	\downarrow 5, \uparrow 1
(:])	5080%	0.90	0.90	$\downarrow 5, \uparrow 3$
$(\dot{\mathbf{O}})$	5800%	0.94	0.91	$\downarrow 5, \uparrow 3$
888	14700%	1.31	0.98	$\downarrow 5, \uparrow 6$

fiber-rich network operator; fiber-short network operator.

Conclusion

- We proposed an Edge Cloud Radio Access Network (e-CRAN) architecture.
- We model an intrinsic trade-off between centralization and distribution of computational resources in e-CRAN.
- We found that there is no "one-size-fits-all" solution for splitting wireless baseband processing chain. Because it can be different for various RU-DU types, BS configurations, downstream or upstream, and fiber ownership.
- We showed that the TCO of e-CRAN can be lower than DRAN and CRAN, with proper functional splits.
- Our quantitative approach can find optimal splits for a given BS, and estimate the TCO of e-CRAN compared to DRAN.

