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1. RSA overview /1SN
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RSA: routing and spectrum assignment (allocatioh
V  The methods are used to solve RSA:
Solverouting and spectrum assignmemintly

Divide RSA intothe two separated problems,
routingand spectrumassignment, and solheach
oneindependently

V  Increase resource usage ratiogbgoming either in
electronic domain or optical one.
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According to the given or input parameters of eacl
connection request, if network resource are assign
we need to find a optimized scheme of resource
allocation. It is impossible to decide whether such :
scheme Is optimal or not in the feasible space for
the most cases.

Generally speaking, RSA can be roughly classified
Into four aspectsthe requested service source
network resource scenarj@ggoblem modelingand

Its solution methods



Properties of a connection request /[ gzzssu=

DynamicsE
A Static: Requested connection arrives at t=0,never
| eaves or service durat.

A Dynamic: Both arrival moment anservice duration
are random.

A Semidynamic (scheduled): Forarrival moment and
serviceduration, at the least one parameter is given

advance (there are three cases).
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N -

V' Number of source and destination
users/connectionk

unicast (11)

unicast (1n)

broadcast (lall)

Mix or combination of those listed above

o o To Io I

hybrid-cast (m: n)
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V  Bandwidth granularity E

A Absolute transmission bandwidth, [a, b] Kbps, Mbps,
Gbps

A Absolutebandwidth, [a, BOC1, €l s)
(OC1=51.84Mbps)

A Relativebandwidth,[a, bFSs,(-I s) (Frequency Slots),
It became hsolutetransmissiorspeed if the absolute

bandwidth of each carrier and modulation are given.
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Topology of physical networks /[ gzsssus

V  Single (domain)E

Small ,6 nodes

Middle ,e.g.NSFnetwith 14 nodes and 21 links
large e.g, ARPAnet,CHINAnNet

Created randomly

V  Multi -domainE

A Consist of several networks that are heterogeneous
and/or homogeneous, and are usually located In
horizontal direction, e.g., access network + core
networks.

o To Po I»
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V. Multi -layerE

A Consists ofnetworks that arbeterogeneousnd are
usually located iwvertical direction ,e.g.,

SDH/OTN/Fiber



2.1 RSA Modelling /1SN

A Modeling types:
A Integer Linear Programming (ILP)

A Mixed ILP (MILP)

A Modeling components
A Subject ta(S.T.): spectruncontinuity constraint,
gpectrumcontiguity constraint, noroverlapping constraint
bandwidthcapacityconstraint, guarbandconstraint, etc.

é
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Objective
A Single objective:

Minimizing number of wavelengths and FSs, crosstz:
In multi-core fiber, blocking, CPEX, OPEX, energy
consumption, etc.

Maxi mi zing operator 0s |
Multi -objective E

There are more than two objectives which are
diversionary or conflict to some extent, e.g.,
Minimizing theconnection blockingndcrosstalk

among multicore.



2.2 RSA solution methods ﬂz

A  Can be classified to two kinds:
A Mathematical ProgrammingE

We can use programming solution tools like Lingo anc
IBM CPLEX) in small topology of static service.

A Heuristics:

We can find optimal solutions in partial space or
approximatelyoptimized solutions. These algorithms have
low complexity and are very suitable to dynamic service.
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4 Heuristic algorithms consistof three types

A Traditional heuristicsE

It is based on intuitionr experiencewe usually do not
know the gap between the feasible solution and optimal c
e.g.,min hops with k routes.

A Metaheuristics:

It is based omhe features afaturalphenomenar the
biological beings , we refer to as this kind to intelligent
algorithms.

A Hybrid -heuristicsE

Mix thetraditionalheuristic algorithnmandintelligent
one, especially, combination of different algorithms.



4  Traditional algorithms

A
A

k-SP(k shortest paths )

weights of metric: For all candidate paths, we select
the best ondoy hops of links, link bandwidth usage
ratio, suitability, or combination of factors with
normalization.

Tabu: disenabling some parameters, link had been
used to prevent loop route.

Combination of weight€ key links for whole
network or weighted links, multiplicatioof requested
bandwidth and min. hops along the path
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A Meta-heuristics
A Evolutlonary E

cC: . C:. C:

I GA: Genetic Algorithm

Co-Evolution Co-Ev, cooperativek interactions
among several populations

Diff -EvolutionE thepresent population is
composed oh parent population and one that is
thedifferentiationof two parent populations

ACQO: antcolony optimization
PSO: particleswarm optimization
SA: simulated annealing
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A Artificial intelligent (Al) algorithms E
U artificial bees
U artificial fishes

U artificial neural networks

U artificial Immunesystem

U

yd

e
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A Hybrid intelligent algorithm
A Mix the traditional - and intelligent- algorithm
A Examples of hybrid GAE
U Add GA with adaptation , changing some paramete

In GA, e.g., methods of crossover and mutation, an
their probabilities

U GA plus immune
U GA plusTabu
u e
A GA plus ACO: we use ACO to get the improved initial
population
A GA plus SA
A é



3. Some works in our group JISN T
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U Heuristick
? 1) Dr. YANG Fan
? 2) 1 and Mr. ding ZE (a Ph. D candidate)
Integrated weighting, key links, etc.
U Intelligentalgorithms(implemented and ongoink)
?  GA for various scenarios
? ACO with static and dynamic requests

? Co-Evwith single and multiobjective ,blocking
and crosstalk in muHltcore fiber networks



U Project&
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Novelintelligent algorithms and formalization of
resource optimization in hybrid elastic optical
networks, national Nature Science Foundation of
China (NSFC)No0.61572391, 2016:2019.12

Key tech. onl'bpstransport equipment with
100G/40G interface (subproject), ministry of
Industry and Information Tech. (MIIT) , 2012.1
2015.12
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U Outputse
? PaperPublished nearly 40 papers which are
iIndexed by SCI and EI, most of them are written
Chinese
? Patents We had more than 20 patent application
and got 4Licensed oauthorizedPatents




4. Research suggestions g‘?!g

r  On the basis of all aspects or components that are rele
to writing a paper and just introduced, | asked me how
can we make some aspects unusual? The general ide
mix, hybrid, diversity, etc. It means the mix of some
related components with new ideas.

r Here are some examples, the ideas are from the
discussion between teacher and students, the
Implementation in following examples are made by my
M.E. studentdr. JIA Wenbin Mr. WANG Kai, and Mr.
ZAl botaa
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r Example No.1
r  For dynamic service and atrival moment of each

request, can we consider the future information or
factors affecting the path selection, such as the traf

of each link ?

r  We useBackpropagation neuraletworks (BPNNSs)
to predict the traffic in the future, and propose an
algorithm of MinimumComprehensiv&V/eight with
Prediction (MCWBR.

r Here, we review MCWP using an integrated weig!

some more details are found in [1] .

[1] WenbinJia,ZhangiXu,ZheDing, Kai Wang. An Efficient Routing and Spectrum Assignment Algorithm Us
Prediction for Elastic Optical Networks. International Conference on Information System and Artificial
Intelligence (ISAI). Jun@2016,HongKong,China ---- PPT is available if interested
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r Procedure of MCWP:
r Stepl:Selectk paths with Shortest path Firftr each
source/destination pair. Use BPCN to predict the traffic
varying of all links;

r Step2, Calculate thelime Coincidence Ratiodenoted
by (A/B) , I.e., here A denotes the sum of time
coincidence related to the new arrival request for all links
along one of th& candidatgaths;while B represents the
time duration of the newequest is multiplied by the
number ofthe related links which have time coincidence
or overlapping with th@ewrequest.

r Step3:UseTCR thenormalized hops anithe spectrum

usage of the candidate path, as the Integrated Weight
(IW). Select the path that has the |da¥t.




E Per-link capacity: 320 frequency slots
E Width of a frequency slot: 12.5GHz

E (s, d) pair is uniformly selected from all possible source-
destination pairs

E Self-similar traffic

E The requested frequency slots is randomly generated with a
uniform distribution within [1,6] frequency slots

E 5 candidate paths for each connection, 1 guard frequency slot
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This figure gives the blocking probability between KBP (first fit) and
MCWRP. It shows that blocking probability of MCWP is lower than that of
KSP-FF. Instead of Poisson streane wuse aelf-similar traffic, and we
explain later.

The primary reason for this experimental result is that the traditional RS/
algorithms only consider the current spectrum situation and do not forec
future information to reserve more resource for burst connections. More
MCWRP could comprehensively consider the time domain overlap, spectr
utilization and path length.
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r  Example No.2
r Can we us@ewservicemodelsthatare more
practical than those used usually?

r  For dynamic service, arrival of each requsstsually
Poisson process. However, we use-seffilar model
In whichinternet service igdepicted odescribed
mo r e Mneetsafactthadypeen verified by many
studies.
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In this Fig., we comparethe blocking probability betweer
Poissonmodelandselfsimilar model Due to the bursty of
requests,the blocking probability of self-similar traffic
Increasesinearly comparedo that of Poissontraffic when
the total traffic is less than 350 erlangs When the H
parameterns larger, the blocking probability keepshigher
for self-similar traffic itself.
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ExampleNo.8 (I n fmwslpteict s)
(1)multi-objective

r

Can we use muhobjective for multicore EON?
Since multtiCore EON has special crosstalk problen

Based on multrobjective evolutionary algorithm witr

decomposition (MOEAD), we proposed two objecti
for multi-CoreEON, and have made a partial progre
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(1) Simulation parameters
E Core number / link: 7
E Capacity / core: 80 frequency slots

E Request capacity of traffic: uniformly

within [1,10] frequency slots
E Number of connection requests : 1000
E 5 candidate paths for each connection

E 1 guard frequency slot

(2) MOCEA (will be renamed)

E Population size: 100

E Crossover probability: 0.9

E Mutation probability: 0.5

(3) MOCEA/D (will be renamed)
E Population size: 100

E crossover probability: 0.5 (differential

evolutionary)

E mutation probability: 0.3
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E The solutions of MOCEA and MOCEA/D dominate that of KSP.

E Compared with MOCEA, MOCEA/D has better uniformity and wider
distribution space.

E The convergence of MOCEA is better than that of MOCEA/D .




