Risk-Aware Rapid Data Evacuation for Large-Scale Disasters in Optical Cloud Networks

Presenter: Yongcheng (Jeremy) Li

PhD student, School of Electronic and Information Engineering,
Soochow University, China

Email: liyongcheng621@163.com

Group Meeting, Friday, August 26, 2016

Outline

- 1. Background
- Risk-Aware Rapid Data Evacuation For Large-Scale Disasters
- 3. Heuristic Algorithm
- 4. Performance Evaluation
- 5. Conclusion
- 6. Future Work

Background

- Enterprises deploy their cloud services such as cloud data storage and applications in distributed datacenter (DC) networks.
- Cloud services require <u>Terabytes</u> or <u>Petabytes</u> of data transfer.
- Optical networks can be used to facilitate data transfers.
 - Advantage: high bandwidth and low latency in inter-DC networks.
 - Disadvantage: services can be disrupted by disasters (such as earthquakes, tornadoes, and intentional attacks).
- A large-scale disaster can lead to high data loss and service disruptions.
 - 2011 Japan Earthquake damaged many cloud providers' data.

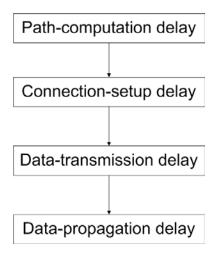
Background (contd.)

- Provide redundancy (and protection) against data loss.
 - Distributed content/service replicas in different DCs.
- All replicas of a content can be lost in a large-scale disaster.
 - Critical data must be quickly evacuated from DCs in the disaster region to safe DCs prior to the disaster.
- Rapid data evacuation.
 - Receive warning of an oncoming disaster from various sensors and monitors in their network and/or from government or intelligence agencies.
 - Depending on the type of disaster (e.g., earthquake, hurricane or weapons of mass destruction (WMD)), do the following prediction.
 - Disaster zone
 - Evacuation deadline
 - Potential damage in the infrastructure
 - Before deadline, quickly evacuate as much critical data as possible.

Background (contd.)

Safe data transfers

- Possible independent disasters may compromise the process of data evacuation.
- Risk of node/link failures must be considered to ensure safe data transfers.
- How to objective a tradeoff between evacuation time and risk of data loss during evacuation.



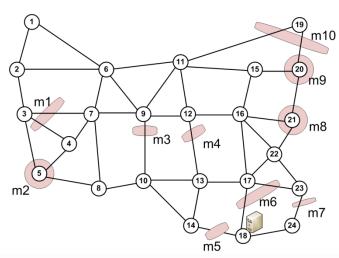
Time delay

- Path-computation delay.
- Connection-setup delay.
- Data-transmission delay.
- Data-propagation delay.

Notations

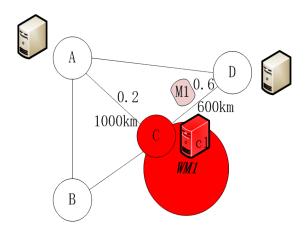
- Distance of path: l.
- Number of hops on path: n.
- Bandwidth of path: B_p
- Propagation delay per unit distance: μ.
- Processing delay: η .
- Switch configuration delay: β.
- Assume the same propagation delay for data and control messages.

Equations


- Connection-setup delay
 - Control-message processing delay: $(n + 1) * \eta$
 - Control-message propagation delay: $l * \mu$
 - Switch-configuration delay: $(n + 1) * \beta$
- Transmission delay: F_c/B_p
- Propagation delay: l * μ

The risk of node/link failures

- $risk_l^m/risk_n^m$ are the probabilities of link l or node n being damaged due to disaster $m \in M$.
- $\prod_{l \in L, m \in M} (1 risk_l^m) \cdot \prod_{n \in N, m \in M} (1 risk_n^m)$ computes the probability that all links and nodes are not damaged by any disaster.
- Path failure probability:


$$risk_p = 1 - \prod_{l \in L, m \in M} (1 - risk_l^m) \cdot \prod_{n \in N, m \in M} (1 - risk_n^m).$$

Example

- Transfer content c1 from node C to safe DCs A or D as fast as possible.
- Failure probabilities of links C-D and A-C is assumed as 0.6 and 0.2.
- Select destination DC D
 - Evacuation time is less but the risk along path C-D is higher.
- Select destination DC A
 - Evacuation time is high but the risk along path C-D is less.

Problem statement

- Objective:
 - Achieve an optimal tradeoff between evacuation time and risk of data loss during evacuation.
- Given inputs:
 - N is the set of nodes and L is the set of links.
 - Physical topology G = (N, L).
 - Set of possible disaster zones M.
 - Set of predicted WMD attack zones WM.
 - Set of DCs D.
 - Storage capacity S_d .
 - Set of locally hosted contents C_d.
 - Number of replicas of content c R_c.
 - Importance metric of content $c \alpha_c$.

Problem statement

- Input:
 - Size of content c F_c.
 - Residual link capacity B_l , $l \in L$.
 - Evacuation deadline T.
 - Set of k-shortest paths R_{ij} for each node pair (i,j), $i,j \in N$.
- Constraint:
 - Available link capacity is limited.
 - Data-transfer delay to be upper bounded by evacuation deadline.
 - Different paths can be used in parallel for different connections if paths do not overlap.

Heuristic Algorithm

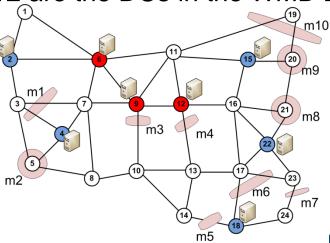
Disaster mapping:

- Get a set of DCs $D_{wm} \in D$, $wm \in WM$. // Datacenters in predicted disaster zone
- Get a set of DCs $D_{out_wm} \in D$, $D_{out_wm} = D D_{wm}$. // Datacenters outside predicted disaster zone

Content selection:

- For each DC $d \in D_{wm}$
 - Get a set of contents, C_d , $d \in D_{wm}$, $C_{wm} = C_{wm} \cup C_d$, $wm \in WM$. //Contents in predicted disaster zone
- For each content $c \in C_{wm}$
 - If all replicas of content c are in the disaster zone WM then
 - Put c in a content list C_{Eva} and get set of DCs D_c , which host the replicas of c. $/\!/ C_{Eva}$ is a set of contents to be evacuated
 - Sort C_{Eva} based on α_c in a descending order.

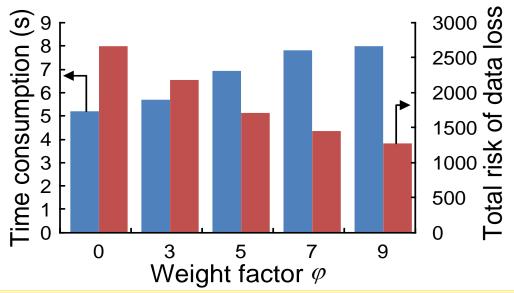
Heuristic Algorithm


- Destination DC selection and path delay and risk computation:
 - For each content $c \in C_{Eva}$
 - For each $d \in D_{out_wm}$, if $F_c \le S_d$ then put d into list of available DCs D_{Ava} // D_{Ava} is a set of safe DCs with available storage
 - Get set of k-shortest paths R_{ij} , $i \in D_c$, $j \in D_{Ava}$
 - For each path $p \in R_{ij}$
 - Obtain total delay $delay_p$ and risk $risk_p$ to calculate "general cost" $Cost_p$
 - $Cost_p = delay_p + \varphi \cdot risk_p$
 - Set path p^* which has minimum cost $Cost_{p^*}$ as final solution

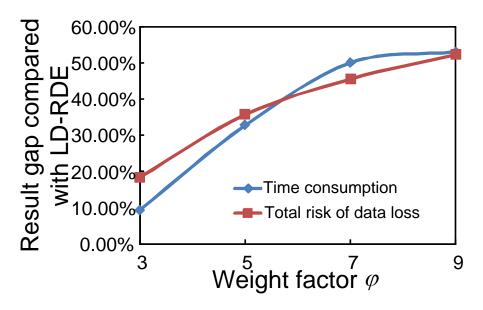
Performance Evaluation

Simulation conditions

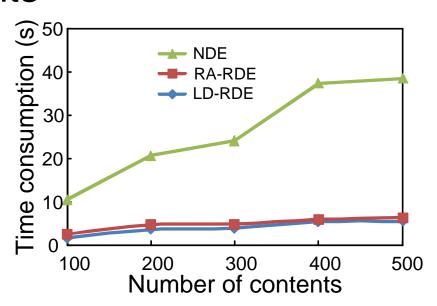
- Network topology: 24-node USNET topology.
- Disaster type: WMD attacks.
- A predicted WMD zone: WM
- A set of 10 possible independent disaster zones: M.
- Blue nodes represent safe DCs.
- Red nodes 6, 9, and 12 are the DCs in the WMD zone WM.



- Large storage capacity ranging from 10TB to 100TB (average occupation is assumed to be 40%).
- Residual link capacity is assumed to range from 500Gbps to 1Tbps (network is assumed to have 30% utilization).
- Number of contents is assumed to be 300.
- Size of each content is randomly generated within the range of [100GB, 200GB].
- The contents are uniformly distributed among different DCs with the number of replicas ranging from 2 to 4.
- Contents are randomly assigned the importance metric α_c on a scale from 1 to 10.
- Processing delay, propagation delay, and switch configuration delay to be 10 μs, 5 μs/km, 15 ms.


Total risk of data loss and evacuation time

- Shows the time consumption and the total risk of data loss for the RA-RDE algorithm with an increasing weight factor φ .
- We see that RA-RDE can significantly reduce the total risk with an increasing φ .
- This is reasonable since a larger weight factor can lead to higher risk reduction in the "general cost".

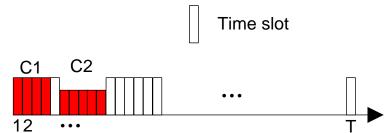

Performance comparison

- Compare the performance of RA-RDE with the LD-RDE algorithm which selects the least-delay paths for data evacuation without considering risk.
- It should be noted that the RA-RDE algorithm is equivalent to the LD-RDE scheme when $\phi = 0$.
- We see that, when $\varphi=3$, our approach reduces the total risk by 20% and needs less than 10% additional time consumption.

Time consumption with an increasing number of contents

- Compare time consumption of the two rapid evacuation approaches with the nearest data evacuation (NDE) approach which evacuates data only to the nearest DC.
- With an increasing number of contents from 100 to 500 and $\varphi=3$, we can see that RA-RDE performs close to LD-RDE and is much better than NDE, which verifies its time efficiency.

Conclusion


- To balance performance between time consumption and total risk of data loss, we defined a "general cost" considering path delay and path risk using a weight factor.
- We develop a risk-aware rapid data evacuation scheme for largescale disasters in optical cloud networks.
- Results show that proposed approach significantly reduces total risk with minimal addition time consumption.
- Time consumption close to LD-RDE under different number of contents.

Future Work

 Try to propose an MILP model to solve the rapid data evacuation problem by using time slot

- Time slot contiguity
- Time slot continuity

 Investigate an new heuristic algorithms with the ICC paper of Wu Yu

Thank you for your attention!

Presenter: Yongcheng (Jeremy) Li

PhD student, School of Electronic and Information Engineering, Soochow University, China

Email: liyongcheng621@163.com

Group Meeting, Friday, August 26, 2016

