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» Our Proposal: Degraded Service Provisioning (DSP)
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Introduction

* Network traffic is becoming extremely dynamic and bursty, due
to increase communication mobility and heterogeneous demands.

* Network fluctuation and anomaly severely impact user
experience, as well as operator’s revenue.
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Introduction (contd.)
B

- Precise prediction is hard, while statistical prediction can be achieved using machine-learning
(neural networks [1]) and stochastic-process [2] techniques.

- Anomaly cannot be predicted, but detection methods is mature [2], so how to cope with it?

- Implicit trade-off: peak-valley gap vs. degradation flexibility

Original total traffic vs. predicted total traffic based on the proposed strategy Network Anomalies Detection as the SeparationCombination Strategies Applied
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Fig. 3, anomaly detection [2].

[1] Vicente Alarcon-Aquino, and Javier A. Barria,
"Multiresolution FIR neural-network-based learning
algorithm applied to network traffic prediction." /EEE
Transactions on Systems, Man, and Cybernetics, Part
C. Applications and Reviews 36, no. 2 (2006): 208-220.

[2] Jun Jiang, Symeon Papavassiliou, “Enhancing
network traffic prediction and anomaly detection via
statistical network traffic separation and combination
strategies,” Computer Communications, 2006.
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Introduction (contd.): research problems
B

Given network capacity, how to exploit network flexibility to deal with unexpected traffic
peaks?

Increase network robustness against transient peaks.

Given a certain amount capacity, accommodate more traffic (achieve more revenue)
than conventional.

Given traffic profile, how to conduct incremental network capacity planning, how
much capacity is optimal

Perfect prediction or statistical percentage of traffic anomaly (e.g. 95% (of time)
100G baseline, 4% 200G peaks and 1% 300G peaks)?

Find optimal balance between user experience and operator’s revenue.

Network revenue model, the optimal capacity under given traffic profile.
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Related works

On incremental network capacity design, an interesting JOCN Paper from UPC Spain:

Luis Velasco, Fernando Morales, Lluis Gifre, Alberto Castro, Oscar Gonzalez de Dios, and
Marc Ruiz, “On-demand incremental capacity planning in optical transport

networks,” IEEE/OSA Journal of Optical Communications and Networking, vol. 8, no. 1 pp.
11-22, 2016.

Problems solved: exact prediction is not usually available. This leads to the installation of more
capacity than required, thus increasing network expenditures. In this paper, we propose to
reduce expenses by incrementing the capacity of the network as soon as it is required to meet
the target performance. Performance metrics are monitored and the incremental capacity (INCA)
planning problem is solved on-demand when some metrics drop under a threshold.
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Incremental capacity planning

- Augmented network lifecycle. - Incremental network capacity (INCA) planning
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INCA problem statement and formulation

- INCA problem: deciding which resources need ¢ The augmented network topology represented by graph
G.(N,E,), where N represents the set of optical nodes
to be added to the_ network to ensure some and E, the set of links. The subset L CE, contains inac-
performance metrics. tive links ready to be installed.
. . . - e A set of available li d d th d-slot ti-
. Grade of service (i.e., blocking probability). bility, T i e EREEOn SRR
. Restorability (defined as the ratio between ¢ The physical layout of eaf:h node m terms of card slots.
th b f LSPs that full ¢ The cost structure of adding new links.
€ number o S hat are successiully ¢ The blocking probability and restorability thresholds to
re- stored and the total number of LSPs to be ensured, based on operators’ policies.

restore) under single-link failure scenarios. Objective: Minimize the cost of extending the network

. - topology, considering the cost of activating new links and
They propose a Integer Linear Program to installing new line cards.

solve the incremental CapaCIty plannmg Output: The subset of links in L to be activated and line
problem. cards to be installed in every node.
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Planning schemes and traffic profile
B

Introduce two schemes

provisioning-wise INCA (Pw-INCA) the scheme that focuses on blocking probability, ensures
that probability of accepting new incoming requests is higher than the threshold.

recovery-wise INCA (Rw-INCA) the scheme that centers on restorability, guarantee that the
restorability after the single failure of every active link is higher than the given threshold.

Traffic profile

simulate for 10 years, traffic load is increased 25% per year (in monthly intervals).
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Results for the Pw-INCA algorithm

(b) 20 (c) 20
none ——none
_ —O—Monthly Pw — —/— Monthly Rw
° o
S sl ——Yearly Pw S 15 L —— Yearly Rw
2 2
) 2
2 ©
S 2
2 g 10+ 4
a [
o =
£ £
3 =<
% 0
o o
o [11]

Fig. 6. (a) Telefonica national network and blocking probability against time, (b) provisioning-wise, and (c) recovery-wise.

Results for the Pw-INCA algorithm, when it was run monthly after monitoring traffic and when it
was run at the beginning of each year, based on perfect traffic estimations.
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Results for the Rw-INCA algorithm
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Fig. 7. Restorabilitv against time (a) provisioning-wise and (b) recoverv-wise. (¢) Added links versus vear.

TABLE VI
CARDS-YEAR INCREMENTS
Year No.
1 2 3 4 5 6 7 8 10
Pw-INCA 3.3 5.8 3.0 3.0 3.7 13 4 9.8 6 0
1.8 6.2 2.8 6.7 10 11 11 14 0 0
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Paper Conclusion

« Periodic planning needs predictions as exact as possible for the expected traffic volume and
distribution—which, although feasible for static traffic scenarios, is unreal when dynamic traffic is
considered. So on-demand incremental planning is needed.

« Pw-INCA provides peaks of high blocking and low restorability, even when the capacity is added
beforehand.

« Rw-INCA scheme showed a close-to-zero blocking probability and virtually full restorability.
* Rw-INCA scheme installed more capacity than the Pw-INCA one.

« Implementation feasibility is also discussed, a architecture with NMS, PCE containing the operation
databases, a planning tool where algorithms run, and the inventory system is proposed. The
proposed architecture was experimentally validated on our SYNERGY test bed.
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Review remarks
L

» This paper solves an important problem of on-demand incremental network capacity planning.
« The way that they treat incremental traffic is worth learning from.

« Implementation is tested, which adds the feasibility to the paper.

« This paper is based on the assumption that PERFECT traffic prediction is provided. However, when
it is not perfect, which is a more normal case, what should we do?

 In other words, this paper solves the problem on a monthly basis. What about tidal traffic within the
time range of a typical day, or other short-term period where transient peaks may occur.

Degraded service provisioning [3] to address unexpected traffic peaks.

[3] Zhizhen Zhong, Jipu Li, Nan Hua, Gustavo. B Figueiredo, Yanhe Li, Xiaoping Zheng, and

_:’é‘““““' Ry * ,\,é Biswanath Mukherjee, “On QoS-Assured Degraded Provisioning in Service-Differentiated
’: rg g /\ g Multi-Layer Elastic Optical Networks,” in GLOBECOM 2016, to appear. I l‘ DAVIS
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Our Proposal: Degraded Service Provisioning (DSP)
I

- Degraded Service Provisioning (DSP) refers to providing a degraded level of service when
network congestion occurs instead of no service at all.

- Degraded service provisioning needs network flexibility.

- On service (electric) layer, the flexibility can be achieved by adjusting transmission rates.

- On optical layer, the flexibility can be achieve by adjusting modulation levels.
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Motivation

« Problem to solve: Given network capacity, how to deal with transient traffic peaks.

« Scenario: Network capacity is sufficient for baseline traffic accommodation, but insufficient for peak
traffic.

« Problem formation: Traffic-fluctuation-robust bandwidth failure minimization problem by degraded
provisioning with service prolongation in elastic optical networks.

« Methodology: Do degradation on existing baseline requests (also lightpaths)
+ Information to get:

* 1. how much peak/baseline ratio can be achieved with no blocking? (conventional: 1.2, ours: 3),
and how bandwidth blocking ratio line goes in conventional’s and ours?

« 2. how request degradability affects the effect of our method? (90%, 30% degrade ddl)
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Traffic-Fluctuation-Robust Faillure Minimization Problem with DSP

« When traffic peak arrives, baseline traffic is already provisioned. So we should plan the
incremental peak traffic on the basis of existing baseline traffic.

« Two-stage network planning:
 Integer Linear Programming formation for baseline traffic planning
* Normal routing and spectrum modulation level allocation problem.
« Constraint Programming formation for incremental peak traffic accommodation

« Use ILP results as input, degradation with service prolongation on electric layer, and
modulation level adjustment on optical layer.

» Routes of baseline traffic (on both electric and optical layers) cannot be changed, while it is
only the transmission rate on electric layer and the modulation level along with spectrum
allocation on optical layer that can be reconfigured.
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Extensions

« Change the optimization criteria, see what happens.
* Minimize bandwidth failure=maximize accepted bandwidth

« But #maximize revenue, it depends on network revenue models (e.g. power-law by Kleinrock,
and penalty-included revenue)

» Information may get: different goals results in different result sets, if the operator focuses on
performance (Max accepted bandwidth), there is one sort of results, and if the operator focuses
on revenue (Max revenue), there may be other results.
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Thanks!
Any comments or questions?

Zhizhen Zhong
zhongzzl4@mails.tsinghua.edu.cn
2016.09.09
Networks Lab Group Meeting
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