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Reconfiguration in fronthaul

* 5G systems aim to achieve flexibility and reconfigurability in both radio
access part and signal processing part

* Classified into bandwidth reconfigurability and network reconfigurability

* Bandwidth reconfigurability : flexible on-the-fly bandwidth allocation to
fronthaul links depending on need of RE

* Fronthaul can be dimensioned for current traffic rather than peak traffic,
saving capacity and network equipment based on traffic profile, antenna
capacity, cell size, user level QoE

* Network reconfigurability : ability to change fronthaul network topology
on-the-fly based on requirements of cells

 Network can change based on co-ordination scenarios (CoMP), energy-
efficiency schemes, etc., thus changing fronthaul topology
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Bandwidth Reconfiguration - Antenna
configurations

e CPRI allows rate negotiation to switch to different line rate when antenna
configuration changes

* Antenna reconfiguration on/off (sectors, antenna, cell) can happen depending on
user traffic requirement

* Power saving, interference reduction, frequency reuse etc. are use cases
LTE cell breathing — adaptive coding (each sector has different coding)

* Vendor — cell adaﬁtlve (change frequency) 3GPP — each sector different
modulation — within a sector different modulation (5Mhz to ZOMhz)
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Fronthaul stringent requirements and
problems

* CPRI switching can be very difficult (as it is very highrate)

* Need to enable statistical multiplexing by evolving from CBR CPRI to
packet-based fronthaul

* Fronthaul must be dimensioned for peak traffic rather than current
traffic

 Stringent performance requirements imposed by CPRI
1) 100us of one way delay — previous study shows this is met
2) 65ns of maximum variation in delay (i.e., jitter) — prev. study showed
3) up to 10Gbps of throughput per RRH
4) 1012 of maximum bit error rate.



System Model: Could/Virtualized RAN
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* CPRI over Ethernet (CoE)



Jitter

Variation in delay : two types

* Intra frame jitter — due to different cycle lengths in frame — more
prominent

» Reconfiguration jitter — due to adapted line rate .Change in scheduling —
happens in larger timescale- will be studied now

* TDM signals are isochronous meaning that time between two
consecutive bits is theoretically always same. This time is called
unit interval(Ul)

e Jitter is conventionally measured in unit interval peak-to-peak
(Ulpp) that is, difference between maximum and minimum time
intervals in units of nominal Ul

* For example, for an E1 signal with a Ul of 488 nanoseconds, if maximum

interval were 500 nanoseconds and minimum 476, jitter would be(500-
476)/488 = 0.05 Ulpp



Intra frame jitter
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Ethernet output

10 Gbps —
Jitter on flow 1 due to varied delay between consecutive packets

* Flow 1, 2, 3 have difterent rates as shown , for example, there is jitter on flow 1 since
proper scheduling policy is not enforced on the CoE switch, leading to variation in
delay between consecutive flow 1 packets as shown above

* For ideal zero jitter, all the flows must be exact spaced according to their inter packet
time without Ethernet encapsulation
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Exhaustive search Comb fitting algorithm

Slide combs until they perfectly fit among each otherlf they do not perfectly fit, break a
tooth and put them in adjacent available slot.

AT CORITI - COME TITTING
Input: Schedule of CoE flows given by basic offset algorithm
Output: Mon-conflicting schedule of CgE packets
Step 1: Form all possible permutations of order of flows from 1 to Nr (NF! different sequences) denoted by {SEi}

tep 2: for each sequence 3E; € /357
forjin SE;
initialize: matcomb™ as first element in {563/ matcomb is temporary matrix

matcomb = matcombinefcomb’, matcomb)

F-Not scalable

Pick matcomb with least amount of jitter
_JATCOMBINE SUBROUTINE

Input: cﬂmb[, combd (any two schedules)
Output: Combined non-conflicting schedule
Step 1: Initialize: matcomb as a matrix with length as sum lengths of E‘ﬂm-l.:ll:, combd
Step 2: Take the longest sequence out of cumb[, combfand add its contents to matcomb, call the other matrix
mattemp
Step 3: Shift mattemp by the multiples of Ex; to form a perfect non-conflicting schedule with matcomb
Step 4: if there is a success in this procedure
Copy mattemp to matcomb and return matcomb
Step 5: else
Copy the non-conflicting packets of mattemp to matcomb
for all conflicting packets in mattemp

Find the nearest open timeslot which can fit in the packet and update matcomb
end

returnmatcorth
end




Explore scalable algorithms to find Jitter
minimized schedule in reconfigurable CPRI

* JOCN work had exhaustive search which is not scalable for dynamic
large fronthaul which has multiple switches scheduling CoE packets

 Distance constrained scheduling
* Pinwheel algorithm
* SMD algorithm



Distance constrained scheduling

* A common approach to scheduling hard real-time tasks with
repetitive requests is periodic task model [l], in which each task T has
a period P; and an execution time e,

* T.must be executed once in each of its periods

* Some real-time tasks must be executed in a (temporal) distance-
constrained manner, rather than just periodically

* Temporal distance between any two consecutive executions of a task
should not be longer than a certain amount of time — within tolerable
jitter



Scheduling jobs with temporal distance
constraints

* Job scheduling problems for real-time jobs with temporal distance
constraints (JSD) are presented

* In JSD, start times of two related jobs must be within a given distance
e General JSD problem is NP-hard

* Define multilevel unit-time JSD (MUJSD) problem for systems with m
chains of unit-time jobs in which neighboring jobs in each chain must
be scheduled within ¢ time units

* Efficient algortihms exist to solve this - o(n?) time algorithm, where n
is total number of jobs in system, and also an o(m?c?)-time algorithm



Scheduling problem (single processor)

* Given a set of jobs J {J,, J, J, }, in which each job J, has execution time
e, ready time r;, and deadline d,, 1 <=i <=n, job scheduling with
distance constraint (JSD) problem is to find a start time function f
such thatfor 1<=i,j<=n,andi =],

(1) f(J)) >=r,
(2) f(J) + e, < d,, and
(3) | f(J;) - f(J;))| <= w(J;, J;) distance constraint between J; J;

Related problems: linear array problem (LAP), bandwidth minimization
problem (BMP)



In an MUJSD system, job set is divided
into chains of jobsIn each chain, only
first job has a deadline

other jobs have a constant distance
constraint with their immediate
predecessors

The m-chain tree structure of the MUJSD problem.



SMD algorithm

* Among all jobs remaining to be scheduled, we always pick job with largest
number of successors to schedule next

* |f job is a head job we schedule it at empty slot, if any, closest to and
before job’s deadline

* If job is a tail job with its predecessor scheduled at slot s, and if there exists
any empty slot between time s and time s + ¢, we can simply schedule job
at empty slot closest to time s + ¢

* Otherwise we schedule tail job at slot s and then reschedule its
predecessor

* Lemma: If SMD terminates successfully without reporting "unschedulable,’
schedule generated by algorithm is a feasible schedule for job set

* Lemma: If an MUJSD system is schedulable, then SMD will find a feasible
schedule for it.



ALGORITHM SMD
Step 1. Sort the jobs into $y, $;, ..., S, with nonincreasing number of successors.

Step 2. For i from 1 to n do {
if §; is a head job H; then SCHED(, d;, 0)
else { suppose S;’s predecessor is scheduled at slot s;
SCHED(, s + ¢, 0); }

}
procedure SCHED(I, ¢, r);
{
if 1 = 0 then output “unschedulable” and stop
else if slot 7 is empty then f(S;) =1 — 1 /* schedule §; at slot ¢ */
else |

suppose slot ¢ 1s now assigned to Sg;
if ( Sk 1s the predecessor of §;) or (r = 1 and §; is reschedulable)
then { f(S;) =t —1; /*schedule S; at slot ¢ */

SCHED(k,t — 1, 1);} /* reschedule S; */
else SCHED(i,r — 1, r);
}



Pinwheel scheduling algorithm

* Definitions: v is list of n positive integers. A pinwheel schedule for v is a doubly infinite sequence
drawn from labels {1,...,n} such that each label i occurs at least once in each window
of v; consecutive positions.

* If such a schedule exists for v, then v is schedulable. v is nondecreasing
value 3(1/v,) is density of v, written d(v).

* Background: necessary but not sufficient condition for schedulability is having density at most 1.
If each v, is a power of 2, then density at most 1 is sufficient.

* (Chan-Chin) If d(v)s5/6, then v is schedulable.

 Comments: earliest posing of problem showed that d(v)<1/2 is sufficient to make v schedulable.
If vis schedulable, then there is a periodic pinwheel schedule for v with period at most J]v,

* For general problem, Chan and Chin gave various algorithms that proved sufficiency
of d(v)<2/3 and d(v)<.65This was improved to 0.7 in Chan and Chin. Fishburn and Lagarias further
improved it to 0.75.

* Decision problem of schedulability is in PSPACE. For density 1, problem is in NP but may not be
NP-hard. Fast algorithms for generating schedules have also been studied.



Distance-constrained scheduling
algorithms

* )i, Jip Jiz, Task T, has an execution time e; and a (temporal) distance

constraint c. ” »
p(T) = p(T) =3 =
1=1

i=1 1

* Density thresholds (schedulability conditions) for guaranteeing a feasible
schedule for a pinwheel problem instance have also derived, to be 1/2,

13/20, 2/3,0.6964, and 0.7, for S, S,, S, Spy and Syy

* T is transformed into an element, a,, in pinwheel instance, where a. =
floor(c./e)

* Every e, consecutive time slots allocated to i*" symbol of pinwheel instance
are actually allocated to one job request of task T;

e Algorithms designed for pinwheel problem are used to solve DCTS problem



Distance-constrained scheduling
algorithm based on s,

Sx first tries to find an integer x, a,/2 < x <= a, and specializes A with respect to {X} to get
specialized multiset B

Starting from x = a;, down to x = a,/2 + 1, Sx specializes A with respect to {x) and chooses
an x that minimizes p(B), or chooses first x which makes P(B) <=1 (or it finds that no such
integer exists)

For example, If A=(4, 6, 7, 13, 24, 28, 33} is specialized with respect to %4}, specialized
multiset is B = (4,4,4, 8,16,16,32} with a total density of 33/32 > 1, and if A is specialized
with respect to {3], specialized multiset is B = (3, 6,6,12,24,24,24) with a total density of
7/8. Sx will choose x = 3 and get B ={3,6,6,12,24,24,24)

Sy is operation that is used to specialize a general DC task set

S, is a generalization of Sx, Sr specializes C with respect to {r}, where r is real number
chosen from range (c,/2, c,;) so that specialized task set has a minimum density increase

Sy uses polynomial algorithm to find best r and then specializes distance constraint
multiset C with respect to {r}.



Scheduling algorithms

e Scheduler Sr can schedule task sets with temporal distance constraints.

* Distance-constrained task set with n tasks can be feasibly scheduled b
u5|r)1g Scheduler Sr as long as its total density is less than or equal to n?lzl/”
-1

* Deterministic guarantee that all tasks will meet their deadlines as long as
total density is held within density threshold

* |f total density of a DC task set after specialization is less than or equal to 1,
DC task set can be feasibly scheduled by Scheduler Sr

* Sr supports scheduling variable flow constraints required for Jitter
minimization in fronthaul

* Multiprocessor scheduling will be explored to form schedules for large
number of switches in fronthaul
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/*Input: T ={T; = (e, ¢)) | 1 <1 < n}, where T is a DC task set
and ¢;<¢ foralli<j. */

/* Output: 7, ®y(r*), and T' = {T/ = (Ef,bz-} 1<i < n}, where
b;|bjforalli<j.*/

1.fori:=1tondo I =, /2/'8¢/ ),
2. sort(l, 1, ..., I} into nondecreasing order and remove
duplicates;
let (ky, k,, ..., k,) be the resulting sequence;
3.fori:=1ton do put T, into subset 7, ;

4. forv:=1toudo P(Tk:,) (= Zﬂerhﬂ e;]c;;

5. compute $(k,) according to (4.1);

6. forv:=u—1downto 1 do &, (k) := %fbr(kﬂﬂ) - plzy );
/* see Lemma 1%/

7.find 1’ such that @ (%) = min, g, , . Op(r);

8.fori:=1tondob, :=r* 2“05(“”’?*}];

9. output 7, de(r), and T’ = T’ = (e, bf}l 1<i<nh




Polynomial time algorithm for MUIJSD

 PMD algorithm generates a feasible schedule for a schedulable
MUIJSD system with m job chains and distance constraint c in O(m?c?)
time

* Sort job chains and re-index them so that chain with a larger tail
deadline has a larger index (ties are broken arbitrarily)

* Create a pseudochain O which has only one job with a deadline O
(note that head deadlines of all other job chains are larger than 0)This
pseudochain serves as a marker to trigger final cleanup process which
will move jobs scheduled before time 0 to empty slots after time 0

 Step 2 sets initial tail positions of v-chains and initializes counter p
which points to current job chain being scheduled,



ALGORITHM PMD

Step 1. Sort and reindex the job chains in nondecreasing tail deadline order
(i.e., dix, < div1h,,,forl i <m);
Create a pseudochain By with dy = 0 and ky = 0;

Step 2. Set D| = dyu,,;

Set p = m; N . .
Step 3. Let y be the index of the v-chain with D, = max D;; distinct distance constraints
Ifdy, > D, == is NP-completeWith distinct
then { /* schedule chain p */ distance constraints, even if

If p = 0 goto Step 4;

initialize S-list S, to be [(k,; Dy: ¢)]; we restrict graph toa .b|IeveI

reset D, = D, — (k, + e; tree (not a bilevel chain tree)

setp=p-—1} we can show that problem is
else { /* reschedule chains */ .

Among scheduled chains p + 1 to m find a chain B;, still NP'CompIEte-

and locate the job J;;, j = 0, where
(S3.1) J;; is the latest job in B; scheduled before D,, and
(S3.2)dij = D,.
If B; and job J;; exist
then reschedule jobs Jig, Jit, ..., Jij; /* asin §4.3 #/
else reset Dy = Dy — [(Dy — dp,)/clc;
)
Repeat Step 3.
Step 4. If there is any head job scheduled before time 0
then output “unschedulable”;
else output the m S-lists.



