Deploying Multiple Service Chain (SC) Instances per Service Chain

BY ABHISHEK GUPTA FRIDAY GROUP MEETING JULY 14, 2017

Virtual Network Function (VNF) Service Chain (SC)

Multiple VNF SC Placement and Routing

Continued...

Single Instance Per SC

Inferences and Questions

- 1 SC instance per SC leads to suboptimal results
- Having SC instances replicated on every node will lead to to optimal results
 - · Large capital expenditure to make all nodes NFV capable
 - High Orchestration Overhead for large number of instances
- The question therefore becomes:
 - How many SC instances to deploy to reduce bandwidth consumption while also reducing nodes used?

Issue of symmetric flows

Continued...

Continued...

- Placing VNFs for SC at different nodes
 - makes symmetric flow take longer path
- Placing VNFs for SC at one node
 - symmetric flow takes shorter path
 - placement and routing becomes easier
 - · chaining aspect is forgone
 - · Is this more realistic?
 - Represents the case of a DC

Configuration Type 1 – (ILP, CG)

CG Model

Configuration Type 2 - (2 Phase Model)

Phase 1 : Traffic flows areclustered using SPTGPhase 2 : Configurations of Type2 are generated for clusteredtraffic of Phase 1

Comparison (ILP, CG, 2 Phase Model)

Continued...

Full Traffic Matrix, 1 SC deployment, 1 SC instance

All nodes are NFV-capable. All node pairs have requests for the same service chain.

Grouping of traffic pairs

Continued ...

- Create traffic flow groups
- Assign dummy SC Id's to traffic flow groups
- Big Question: How to do we make traffic groups?
- Model accounting for traffic groups becomes quadratic. Subsequent, linearization reduced the scalability of the model
- We, therefore, use a heuristic to do make the traffic groups

Grouping traffic flows around a node

•

Group around node pairs of the graph

- \cdot A and B can also be source and destination
- Done for each SC

Continued...

 Ordered node pair with highest traffic flow count passing through on shortest paths

- Traffic flows which share sub-paths in common
- · Deploying one SC instance for each such group

Shortest Path Traffic Grouping (SPTG)

- Given: the number of instances for a SC, the traffic flows for the SC
- The heuristic will:
 - 1. Find the **node pair** with highest number of flows
 - 2. This becomes another (s, d) pair group/cluster
 - 3. All flows in **group/cluster** are removed from global flow list
 - 4. Repeat step 1 to 3 until number of instances is reached
 - 5. Iterate through the remaining flows:
 - 1. Find best group based on which path length through node pair
 - 2. Add flow to that group/cluster

Shortest Path Traffic Grouping – Traffic Aware (SPTG-TA)

- · Cluster around the heaviest/largest traffic flow
- The heuristic will:
 - 1. Find the **node pair** with highest number of flows **and the largest flow**
 - 2. This becomes another (s, d) pair group/cluster
 - 3. All flows in **group/cluster** are removed from global flow list
 - 4. Repeat step 1 to 3 until number of instances is reached
 - 5. Iterate through the remaining flows:
 - 1. Find best group based on which path length through node pair
 - 2. Add flow to that group/cluster

2 Phase Model

- 1st phase
 - Apply SPTG/SPTG-TA for each SC and create the required number of groups
 - · Assign dummy SC ids to groups of flows
- 2nd phase
 - \cdot Use the column generation model which decides on 1 SC instance per SC
 - Also we can control the number of nodes that can host VNFs, we refer to this number as K'

Assumptions

- All nodes are capable of hosting VNFs
- No CPU constraints are enforced
- No link capacity constraints are enforced
- Only one SC instance per SC model
- All traffic pairs have 1Gb traffic flow

Number of Instances

Number of Instances

Partitioning of Traffic Load

100

90

Node 3

Node 1

Node

Node 5

Node 12

Node 6

Node 13

29

VNF Replica Constraints

UCDAVIS UNIVERSITY OF CALIFORNIA

Correlation between 'K' and 'VNF Replica Count'

Mean Maximum Link Load

Cluster Counts (Uniform Traffic - Same Load)

ASP Bandwidth Variation (Uniform Traffic – Same Load)

Bandwidth Used (Uniform, Same Load, Across Clusters and Traffic)

Compare Cluster Counts (Skewed Traffic - Same Load)

ASP Bandwidth Variation (Skewed Traffic - Same Load)

Bandwidth Used (Skewed, Same Load, Across Clusters and Traffic)

Continued...

Continued...

1 1 TA 2 2 TA 3 3 TA 4 4 TA 5 5 TA 6 6 TA 7 7 TA 8 8 TA 9 9 TA 10 10 TA 11 11 TA 12 12 TA 13 13 TA 14 14 TA 15 15 TA 16 16 TA 17 17 TA 18 18 TA 19 19 TA 20 20 TA 21 21 TA 22 22 TA 23 23 TA 24 24 TA 25 25 TA 26 26 TA 27 27 TA 28 28 TA 29 29 TA 30 30 TA 31 31 TA 32 32 TA 33 33 TA 34 34 TA Traffic Matrix Fullness Percentage

Scenario 2 (4 Service Chains, 1 Tb Load)

Continued...

VNF ID	SC's	Traffic Load (Tbps)
3	0,1,2,3	1.118
1	0,1,2,3	1.118
7	0,1,2	.998
5	0,2,3	.882
4	0,3	.184
9	2,3	.700

K – 2	VNF ID	SC's	Traffic Load (Tbps)
$\mathbf{K} = \mathbf{Z}$	3	0,1,2,3	1.118
	1	0,1,2,3	1.118
	7	0,1,2	.998
	5	0,2,3	.882
	4	0,3	.184
	9	2,3	.700

Continued..._

VNF ID	SC's	Traffic Load (Tbps)		
3	0,1,2,3	1.118		
1	0,1,2,3	1.118		
7	0,1,2	.998		
5	0,2,3	.882		
4	0,3	.184		
9	2,3	.700		

VNF ID	SC's	Traffic Load (Tbps)
3	0,1,2,3	1.118
1	0,1,2,3	1.118
7	0,1,2	.998
5	0,2,3	.882
4	0,3	.184
9	2,3	.700

K-5	Web – 18.2%	VNF ID	SC's	Traffic Load (Tbps)
K-3	$VNF 3 \longrightarrow VNF 1 \longrightarrow VNF 7 \longrightarrow VNF 4 \longrightarrow VNF 5$	3	0,1,2,3	1.118
	VNF 3 VNF 1 VNF 7 VNF 1 VNF 3	1	0,1,2,3	1.118
	Video – 69.8%	7	0,1,2	.998
	VNF 3 \rightarrow VNF 1 \rightarrow VNF 7 \rightarrow VNF 9 \rightarrow VNF 5	5	0,2,3	.882
	$VNF 3 \longrightarrow VNF 1 \longrightarrow VNF 9 \longrightarrow VNF 4 \longrightarrow VNF 5$	4	0,3	.184
		9	2,3	.700

Scalability of 2 Phase Model

Future Work Directions

• Cases where distribution of VNFs occur:

- Cases where CPU resources are constrained or VNF replicas (because of licenses) are enforced
- · Any additional cases?

