Virtual Evolved Packet Core (VEPC) Placement in the Metro Core-Backhual-Aggregation Ring

> BY ABHISHEK GUPTA FRIDAY GROUP MEETING OCTOBER 20, 2017

LTE: All-IP, simplified network architecture

- "The EPC is a <u>multi-access core network</u> based on the Internet Protocol (IP) that enables operators to deploy and operate one common packet core network for 3GPP radio access (LTE, 3G, and 2G), <u>non-3GPP radio access</u> (HRPD, WLAN, and WiMAX), <u>and fixed access</u> (Ethernet, DSL, cable, and fiber).
- The EPC is defined around the three important paradigms of mobility, policy management, and security."

Source: IEEE Communications Magazine V47 N2 February 2009

REF: http://www.comsoc.org/livepubs//ci1/public/2009/feb/pdf/ciguest_bogineni.pdf

Evolved Packet Core (EPC)

"Flat IP" = less hierarchy = lower latency

EPC elements

EPC Architecture

6

EPC elements and functions

Alcatel Lucent

-

LTE Protocol Stack

EPC FUNCTIONAL ELEMENTS

eNodeB - Interactions with EPC elements

Mobility Management Entity (MME)

MME is control plane element that manages network access and mobility

MME controls how UE interacts with the network via non-access stratum (NAS) signalling

- Authenticates UEs and controls access to network connections
- Controls attributes of established access (e.g., assignment of network resources)
- Maintains EPS <u>Mobility Management (EMM)</u> states for all UE's to support paging, roaming and handover
- Manages ECM (EPS <u>Connection Management</u>) states

MME: interaction with other elements

Serving Gateway (SGW) and Packet Data Network Gateway (PGW)

SGW is local mobility anchor

- Terminates (S1-U) interface towards E-UTRAN
- Local anchor point for inter-eNB handover and inter-3GPP mobility
- Support ECM-idle mode DL packet buffering and network-initiated service request
- IP routing and forwarding functions

PGW is IP anchor for bearers

- Terminates (SGi) interface towards the PDN
- Provides UE IP address management (allocation)
- Provide Policy and Charging Enforcement Function (PCEF)
- Per-SDF based packet filtering
- Interface to Online and Offline Charging Systems

SGW - Interactions with other functional elements

PGW - Interactions with other functional elements

PCRF - Interactions with other functional elements

End-to-end protocol stack (User Plane)

* S5/S8 reference point between S-GW and PDN-GW can also be GTP based

Key role of S-GWs and PDN-GWs = to manage the user plane (bearer traffic)

EPS Bearer

- Each EPS bearer context represents a GTP tunnel between UE and PGW
- · Can be a default bearer context or a dedicated bearer context
- Default EPS bearer context is activated when UE requests a connection to PGW during EPS attach procedure
- Additionally, the network can activate one or several dedicated EPS bearer contexts in parallel

Service level policy control

- The PGW needs to support fine-granularity of QoS and charging enforcement functions beyond transport / bearer level
 - Multiple Service Data Flow (SDF) can be aggregated onto a single EPS bearer
 - Uplink and downlink packet filters are defined for each bearer, and QoS enforcements are applied

EPS PROCEDURES

Network attachment and IP address assignment

UE and service requests

Handover and X2 routing

NAS (Non-Access Stratum)

- NAS protocols control EPC procedures
- Non-Access Stratum (NAS) resides between the UE and the MME in the control plane
- NAS is responsible for call processing and session management functions of creation, deletion, modification and management of default and dedicated radio bearers
- NAS procedures are grouped in 2
 - $\cdot~$ EPS Mobility Management (EMM), and
 - EPS Session Management (ESM)

Fig. 1. Traditional cellular EPC with logical interfaces

EPS Mobility Management (EMM)

- EMM protocol provides procedures for mobility control when UE uses E-UTRAN and control of security for NAS protocols
- EMM procedures:
 - EMM common procedures (authentication etc.)
 - EMM specific procedures (attach etc.)
 - EMM connection management procedures
 - Service request
 - · Paging procedure
 - Transport of NAS messages
 - · Generic transport of NAS messages

EPS Session Management (ESM)

- ESM protocol provides procedures for the handling of EPS bearer contexts
- Together with the bearer control provided by Access Stratum, it provides the control of user plane bearers
- Transmission of ESM messages is suspended during EMM procedures except for the attach procedure
- Types of ESM procedures:
 - · EPS bearer contexts procedures
 - Transaction related procedures

EPC Procedures Summary

Event Type	MME	HSS	S-GW	P-GW	PCRF	
Attaches	10	2	3	2	1	
Additional Default Bearer Setups	4	0	3	2	1	
Dedicated Bearer Setups	2	0	2	2	1	
Idle-to-Connected Transitions	3	0	1	0	0	
Conntected-to-Idle	3	0	1	0	0	
X2-based Handovers	2	0	1	0	0	
S1-based Handovers	8	0	3	0	0	
Tracking Area Updates	2	0	0	0	0	
Total	34	2	14	6	3	
TABLE I. TRANSACTIC	ON PER	NAS]	EVENT	by EPC	ELEME	N

Fig. 1. Traditional cellular EPC with logical interfaces [3] Understanding the bottlenecks in Virtualizing Cellular Core Network Functions - Intel Labs, Connectem, AT&T Labs

27

Network Attach Procedure

JE	eNodeB	MM
	NAS Identity Req	1
	NAS Identity Rsp	
-	NAS Authentication I	Req
	NAS Authertication I	Rsp
-	NAS Security Mode Con	mmand
1	NAS Security Mode C	Comp

Figure 10. NAS Common Procedures

Chained Requests (Control Plane)

Control Plane Service Chain with EPC elements only

MME		HSS		MME		PGW		MME		SGW		MME
-----	--	-----	--	-----	--	-----	--	-----	--	-----	--	-----

Chained Requests (Control Plane + Data Plane)

Key role of S-GWs and PDN-GWs = to manage the user plane (bearer traffic)

Problem Statement

- To reduce the bandwidth consumption in a cellular core network while placing service chained requests while adhering to latency requirements
- Inputs
 - Aggregate traffic flows from a aggregation point to PGW (both uplink and downlink)
 - · Latency constraints for communication between each EPC element

Figure 3: Reference Simulation topology

Further details

- Which EPS procedures to consider?
- Maybe include CPU constraints? Or give CPU capacity as an output?
- · What insights would be most interesting?
 - · Do all EPC elements require replication?
 - · Which locations are most suitable for replication?

Event Type	MME	HSS	S-GW	P-GW	PCRF
Attaches	10	2	3	2	1
Additional Default Bearer Setups	4	0	3	2	1
Dedicated Bearer Setups	2	0	2	2	1
Idle-to-Connected Transitions	3	0	1	0	0
Conntected-to-Idle	3	0	1	0	0
X2-based Handovers	2	0	1	0	0
S1-based Handovers	8	0	3	0	0
Tracking Area Updates	2	0	0	0	0
Total	34	2	14	6	3

TABLE I. TRANSACTION PER NAS EVENT BY EPC ELEMENT

Fig. 1. Traditional cellular EPC with logical interfaces

