Datacenter Traffic Measurement and Classification

Speaker: Lin Wang

Research Advisor: Biswanath Mukherjee

Data Collection

- Collect network events from each of 1500 servers
- For over two months.

Traffic Characteristics

- Server pairs within the same rack more likely to exchange more bytes.
- 21% probability to exchange data within the same rack.
- o 0.5% probability to exchange data in different racks.

Figure 3: How much traffic is exchanged between server

Kandula S, Sengupta S, Greenberg A, et al. The nature of data center traffic: measurements & analysis[C]//Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, 2009: 202-208.

Traffic Characteristics

- Server either talks to almost all the other servers within the rack (the bump near 1 in figure left) or fewer than 25% of servers within the rack.
- Server either doesn't talk to servers outside its rack (the spike at zero in figure right) or it talks to about 1-10% of outside servers.

Figure 4: How many other servers does a server correspond

Traffic Characteristics

- Compare the rates of flows that overlap high utilization periods.
- Rates do not change appreciably (see cdf below).
- Errors(e.g. flow timeouts or failure) is not visible in flow rates.
- Hence we correlate high utilization epochs directly with application level logs.

Figure 7: Comparing rates of flows that overlap congestion with rates of all flows.

Traffic Characteristics

- Traffic mix changes frequently.
- The figure plots the durations of million flows (a day's worth of flows) in the cluster.
- Most flows come and go (80% last less than 10s) and there are few long running flows (less than 0.1% last longer than 200s).

Figure 9: More than 80% of the flows last less than ten seconds, fewer than .1% last longer than 200s and more than 50% of the bytes are in flows lasting less than 25s.

Why do we need to identify elephant flow?

- Previous paper shows that a large fraction of datacenter traffic is carried in a small fraction of flows.
- 90% of the flows carry less than 1MB of data
- >90% of bytes transferred are in flows greater than 100MB.
- Hash-based flow forwarding techniques (e.g. Equal-Cost Multi-Path (ECMP) routing) works well only for mice flows and no elephant flows.

Mice flow VS elephant flow

- Small size packet
- Short flow
- Large number
- Short-lived

- Large size packet
- Large volume flow
- Small number
- Long lasting

Mice flow VS elephant flow

• If we only care about the number of packets in the queue, elephant flow transmission is easy to be degraded.

• If we only care about the total size of packets in the queue, mice flow transmission is easy to be degraded.

- Solution:
 - Mahout, a low-overhead yet effective traffic management system.
 - End-host-based elephant detection.

• Advantages of detecting elephant flow at end host.

- Network behavior of a flow is affected by how rapidly the end-point applications are generating data, and this is not biased by congestion in the network.
- In contrast to in-network monitors, the end host OS has better visibility into the behavior of applications.
- In datacenters, it is possible to augment the end host OS; this is enabled by the single administrative domain and software uniformity typical of modern datacenters.
- Use very little overhead. In contrast, using an in-network mechanism to monitor is infeasible, even on an edge switch, and even more so on a core switch.

Curtis A R, Kim W, Yalagandula P. Mahout: Low-overhead datacenter traffic management using end-host-based elephant detection[C]//INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 1629-1637.

• Mahout algorithm:

• Usea shim layer in the end hosts to monitor the socket buffers.

Algorithm 1 Pseudocode for end host shim layer

- 1: When sending a packet
- 2: if number of bytes in buffer \geq threshold_{elephant} then
- 3: / * Elephant flow */
- 4: **if** last-tagged-time now() $\geq T_{tagperiod}$ then
- 5: set DS = 00001100
- 6: last-tagged-time = now()
- 7: **end if**
- 8: end if

• Simulation parameters:

Parameter	Description	Value
N	Num. of end hosts	2^{20} (1M)
	Num. of end hosts per rack switch	32
S	Num. of rack switches	2^{15} (32K)
F	Avg. new flows per second per end host	20 [28]
D	Avg. duration of a flow in the flow table	60 seconds
c	Size of counters in bytes	24 [2]
r_{stat}	Rate of gathering statistics	1-per-second
p	Num. of bytes in a packet	1500
f_m	Fraction of mice	0.99
f_e	Fraction of elephants	0.01
r_{sample}	Rate of sampling	1-in-1000
h_{sample}	Size of packet sample (bytes)	60

TABLE I: Parameters and typical values for the analytical evaluation

Group meeting 6/15/2017

Datacenter Traffic Classification

• Simulation results:

Fig. 4: Throughput results for the schedulers with various parameters. Error bars on all charts show 95% confidence intervals.

Threshold	100KB	200KB	500KB	1MB
Mahout	1.531ms	1.712ms	3.820ms	5.479ms
Hedera	189.83ms	189.83ms	189.83ms	189.83ms

TABLE II: Time it takes to detect an elephant flow at the Mahout controller vs. the Hedera controller, with no other active flows.

Group meeting 6/15/2017

Machine Learning for Traffic Flow Classification

• Machine Learning Algorithms:

- Naïve-Bayes (NBD, NBK)
- C4.5 Decision Tree
- o Bayesian Network
- Naïve Bayes Tree

Flow and Feature Definitions

- o Limitation:
 - Packet payload independent
 - Transport layer independent
 - Context limited to a single flow (i.e. no feature spanning multiple flows)
 - Simple to compute

Williams N, Zander S, Armitage G. A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(5): 5-16.

Machine Learning for Traffic Flow Classification

• Feature Candidates

- o **Protocol**
- Flow duration
- Flow volume in bytes and packets
- Packet length (minimum, mean, maximum and standard deviation)
- Inter-arrival time between packets (minimum, mean, maximum and standard deviation).

• Feature Reduction

• Use CFS and CON to choose features:

CFS subset	fpackets, maxfpktl, minfpktl, meanfpktl, stdbpktl, minbpktl, protocol
CON subset	fpackets, maxfpktl, meanbpktl, maxbpktl, minfiat, maxfiat, minbiat, maxbiat, duration

Machine Learning for Traffic Flow Classification

• Simulation results

Figure 2: Accuracy of algorithms using CFS subset, CON Subset and All features.

Figure 3: Relative change in accuracy depending on feature selection metric for each algorithm compared to using full feature set

Group meeting 6/15/2017

Machine Learning for Traffic Flow Classification

Simulation results •

for each feature set

Figure 6: Normalised build time for each algorithm and feature set except NBTree

amlwang@ucdavis.edu