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Common Optical Node Architecture
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Optical Black Box Vs. Optical White Box

ROADM (Black Box)

Internal connections are hardwired.
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than 1x16 Spectrum Selective Switch (SSS)
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Elastic Space Division Multiplexing (SDM) Networks

* Multi-Mode Fiber (MMF): different propagation modes

* Multi-Core Fiber (MCF): different cores, each carrying a signal
* Few-Mode Fiber (FMF): similar to MMF, but fewer

* Few-Mode Multi-Core Fiber (FM-MCF): FMF and MCF

* Single-Mode Fiber (SMF) Bundles: common long distance systems

* Spatial-spectral superchannels
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Contribution and Considerations

* Investigate planning and dimensioning of MCF-based elastic SDM
networks considering quasi-static traffic model. Propose an algorithm

to solve the Routing, Modulation, Spectrum, and Core Allocation
(RMSCA) problem 1n these networks considering Cross-Talk (XT)

* Compares optical white boxes (AoDs) and black boxes (ROADMs)

* Bandwidth Variable Transceivers (BVTs), weakly-coupled MCFs, no
MIMO (it would require different signals to not be decoupled)

- BPSK, QPSK, 8...64-QAM and PDM

* ROADMs are Colorless, Directionless, and Contentionless

\
/ f UCDAVIS




Cross-Talk (XT) and Mult1 Core Fibers (MCF)

spectrum overlapping
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Provisioning Algorithm
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ROADM Ordering Function

* To reduce number of SSSs, focus on using already lit cores
Cost = (# New link cores lit) * (XT value for path)
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AoD Ordering Function

* AoD: reconfigure to remove unnecessary switch modules, and (more
importantly) optical backplane can route input to output without SSS.

Thus, spread demands through fiber to take advantage of that

Cost = (# Additional switching modules) * (XT value for path)
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Allocation Decision

* Two types:

* Modulation Format Fixed (MFF) — if demand cannot be provisioned within
XT threshold, 1t 1s dropped

* Modulation Format Switching (MFS) — if demand cannot be provisioned
within XT threshold, downgrades modulation level from the most spectral
efficient to some lower modulation that passes the XT threshold test
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Results — Overview
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Results — Part 1

* Incorporating XT values while computing through cross-layer
optimization helps (specially AoD)

« ROADM first seek spectrum resources on non-adjacent cores of
network links, exploiting their dense intra-node connectivity. Once
these are used up, allocated resources are reconfigured to demands to
minimize the level of XT

* AoD occupies (spreading) resources on different link cores to maximize
the fiber switching. Though disjoint spectrum slots are sought, chances
of spectrum overlapping are still higher compared to ROADM

* MFS-AoD better than MFF-AoD for low traffic, but similar for higher
traffic because modulation is lowered due to XT (widening bands)

* Prioritizing the cost function to minimize deployment of new switching
modules (MFS-AoD (dif.)) hurts successful traffic
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Results — Part 3

AoD-based network, in general, and MFF-AoD, in particular, have higher
levels of XT (smaller value of dB) with respect to the ROADM scenario
Modulation switching to lower levels enables MFS-AoD to alleviate the
XT compared to AoD-MFF

MFS-ROADM utilizes resources on non-adjacent cores of the fiber to
minimize the impact of XT

MFS-AoD use partial resources on all cores (with minimum spectrum
overlapping among neighbor cores) to maximize fiber switching
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Results — Part 4
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* For MFS-AoD, switching resources (and thus intra-nodal connectivity)
grow with the increase in traffic volume. More intra-connected nodes
improve chances of finding spectrum resources on shorter paths. Thus, ol . |
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* For MFS-ROADM, path length goes up with the increase in network
traffic volume. Because the cost function forces the selection of shorter
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Algorithm Pseudo-Code

Algorithm 1 XT Aware RMSCA 16: Let A;;a be set of free contiguous slots for ljfd ; ’h‘y_subroutinAe,;_MFF B
1: G(V,&): network topology; 17: ifwzs < Al(,;rd then Select 74, 17", and Algrd with C = min{thrd,lgrd A }s
2: C:set cores, 18: Increment S by 1; if C £ —1 then
3: S: set available spectrum slots; . . 19: Compute xt for d and those prior Return #9. s lﬁd and A -
4: D: set demands sorted for ordering function; . - > s te o 17e
4 . established superchannels that are inflicted else
5: P: path matrix; 7 € P set candidate paths for d € D; by A4 _
6: M: set modulation levels; m;s € M highest attainable . Y gz Reject d;
level for d on path #¢ € m¢; 20: if xt < xt;, for d and all the affected end if
7: Njz: set link core combinations for path 7; superchannels then Try_subr outfine%\/IFS L
8: €: set computed spectrum slots; w;a« € 2 slots needed 21: Compute cost function thrd il A ) Select ¢, I7 ", and Alcﬁd with C
for d on path #¢ using modulation level m.a; 27- end if ‘ = min{Ct_, YA L }
9: X7T: set crosstalk 3. end if e 1Z
thresholds; xt,, € X7 crosstalk threshold for 3 4: end for if C # —1 Egen ¥
modulation format m; ) 5: end for Return 7%, mq, [ , and Alird ;

else _
Decrement M by 1;

10: Initialization: C = —1;

11: for each demand d € D do 26: if S # 0 then

12: Initialization: M = |XT; 27: Try_subroutine_xxx; Downgrade the modulation for d by one level and
13: Initialization: S = 0; 28:  else . compute new values for (2;
14:  for each path 7% € ? do 29: Reject d; if M # 0 then
15:  foreach ™ € R;: do 30:  end if Repeat Steps 13-23;
31: end for else
Reject d;
end if
end if
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