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Introduction
• Rapid growth in Internet traffic:	Nearly	
threefold	increase	over	the	next	5	years

• Elastic optical networks
– Flexible frequency grid
– Better spectrum utilization
– Support	of	super	channels
– Distance-adaptive	transmission
– ……
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Introduction (Cont.)
• Multicast	traffic:	Data transmitted	from	one	
source	to	multiple	destinations

• Bandwidth-intensivemulticast	services	
– Ultra-high-definition TV	delivery,	video conferencing,
inter-datacenter	synchronization,	etc.
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A	Light-Tree-Based	Elastic	Optical	Network
Light-tree:	Optical	channel	from	a	source	to	multiple	
destinations

5

Optical fiber

BV-T

MC-OXC

IP routerLight-tree 1: Aà{C,D}

f8f9

Node B

Node C

Node D

Node A

BV-T: Bandwidth-variable transponder
MC-OXC: Multicast-capable 

    optical cross-connect

f8f9

f8f9
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Frequency	slot	(FS):	A unit	to	quantize	the	spectral	resources	



Motivation
• A failure in	a	link	(esp., a trunk of a light-tree)
could	result	in	severe	service	disruption

• Protection: Enable	network	to	continue	to	
operate	under	a	failure

• We	focus	on	multicast	protection for the case of	
a single-link	failure	in	EONs
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Multicast	Routing,	Modulation	and	
Spectrum	Assignment	(MC-RMSA)

• Multicast routing:	Find	a	routing	tree
• Modulation	and	spectrum assignment:	Assign	
modulation	and	thus	bandwidth
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Distance-Adaptive	Resource	Allocation
• Minimum	spectrum	resources	are	adaptively	allocated	to	an	all-

optical channel	according	to	its	physical	condition
• To	meet	required	optical	signal	noise	ratio	(OSNR),	the	use	of	a	

modulation	scheme	(MS)	for	a	connection	dictates	a	transparent	
reach	(TsR)	or	maximal	transmission	distance

• Modulation	and	spectrum	assignment	is	subject	to	the	longest	
distance	among	the paths to all	destinations
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MS TsR
(km)

Capacity	per	
FS	(Gbps)

BPSK 4000 12.5
QPSK 2000 25

TR	and	Capacity	per	FS	for	Each	MS*

* C. Wang, G. Shen, and S. K. Bose, “Distance adaptive dynamic routing and spectrum 
allocation in elastic optical networks with shared backup path protection,” J. Lightw. Technol., 
vol. 33, no. 14, pp. 2955-64, Jul. 2015.



Major	Constraints	in	Spectrum
Assignment

• Spectrum	continuity	(no spectrum	conversion	
capability):	Assign	same	FSs	in	all	traversed	links

• Spectrum	contiguity	(𝑓", 𝑓$ not	𝑓", 𝑓%&)
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Major	Constraints	in	Spectrum
Assignment	(Cont.)

• Spectrum	non-overlapping:	Any FS	in	a fiber	
cannot	be	allocated	to	two	or	more	connections
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Shared Protection	Scheme
• Protect	a	light-tree	by	having	each	of	its	primary	paths	protected	

via	a	link-disjointbackup	path
– Link-disjoint:	No	backup path shares common linkwith its	primary	tree
– Self-sharing	(SS):	The resources in a	link allocated to a source-destination (SD)

pair	protect	the primary path of another	SD	pair

• Cross-sharing	(XS):	Multiple connectionscan share backup-only	
resources as long as they do not fail simultaneously

An	example	for	protection	schemes:	(a)	a	four-node	fully-mesh	network;	(b)	link-
disjoint;	(c)	self-sharing;	and	(d)	cross-sharing.
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Problem	Statement
• Inputs	and	assumptions

– A	network:	Each	node	is	multicast-capable,	and	each	link	
corresponds	to	a	pair	of	fibers	in	opposite	directions

– No spectrum conversion capability
– A	set	of	multicast	demands
– Each SD pair has at least a pair of link-disjointpaths
– The	same	spectrum	modulated	by	the	same	MS	are	used	
in	both	primary	tree	and	backup	paths	for	self-sharing

• Objective:	Minimize	the	maximum	spectrum	resource	
among	the	spectrum	resources	required	in	all	links	to	
accommodate	the	given	demands

• Methodology:	Mixed	integer	linear	programming	(MILP)	
formulation	and	heuristic	algorithm
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Heuristic	Algorithms
• MILP	is	not	scalable,	but	for	realistic	size	problems	
we	still	need	to	minimize	the	spectrum	resources.	
Accordingly,	we	aim	for
– A	higher-order	MS (shorter	reach ->	shorter	path	->	
smaller	trees	and	fewer	FSs)

– Having	smaller	trees	is	an	additional	benefit	(fewer	
links)

– But	we	may	need	longer	path	->	lower	MS	->	current	
resources	can	be	reused
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Demand-Serving	Order	Matters!
• In	our	heuristic	algorithm,	we	serve	the	demands	
in	an	order

• Different	demand-serving	orders	yield	different	
results

• Two	ordering	methods
– Arrange	demands	in	a	decreasing order	of their
required FSs

– Randomly shuffle	the	demands	to	obtain	a	randomly	
ordered	demand sequence and	to	further improve	the	
solution	quality,	we	consider	multiple	demand	
sequences	for	each	given	set	of	demands	
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Test	Conditions

• FS	granularity:	12.5	GHz
• 10	sets	of	MCC	demands:	for	each	set,	the	
multicast	demands	are	randomly	generated,	
where	the	traffic	follows	a	uniform	
distribution	(100,	200)	Gbps and	the	multicast	
sessions	are	obtained	randomly
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MS TsR (km) Capacity	per	FS	(Gbps)
BPSK 4000 12.5
QPSK 2000 25
8QAM 1000 37.5

Transparent reach and	capacity	per	FS	for	each	MS



Test	Networks
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Numerical Results
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Performance comparison for the n6s9 network 
(10 demands).

Method Routing Service	Order Method	Short	Name
MILP - - MILP

Heuristic
Algorithm APPF Decreasing	Order APPF_G_DO

n Random	Orders APPF_G_n

Compared to MILP 
• APPF_G_DO requires 11.8% 

more spectrum
• APPF_G_100	requires	4.4%	

more	spectrum
100	random	sequences	are
considered	sufficient	to	
achieve	near	optimum
Margin benefit	for	broadcast:	
n6s9 average	nodal	degree	is
low, i.e., 3



Numerical	Results
• APPF_G_4000,	saves	around	9%	spectrum	compared	
to	APPF_G_DO

• 4000	sequences are considered sufficient
• Significant	benefit	for	broadcast:	COST239	average	
nodal	degree	4.7

18Performance comparison for the COST239 
network (50 demands).



Numerical	Results

• APPF_G_4000 saves on average 4.3% 
spectrum compared to APPF_G_DO

• USNET average nodal degree: 3.6

19
Performance comparison for the USNET 
network (50 demands).



Conclusions
• We	have	considered	the	MC-RMSA	problem	in	
EONs	with	shared	protection
– A	MILP	formulation	and	an	efficient	heuristic	
algorithm

– The	proposed	heuristic	algorithm	performs	close	
to	the	MILP by allowing a longer running time
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