

Dynamic Workload Migration Over Optical Backbone Network To Minimize Data Center Electricity Cost

Sabidur Rahman*, Abhishek Gupta*, **Massimo Tornatore***[†], and Biswanath Mukherjee* *University of California, Davis, USA [†]Politecnico di Milano, Italy

ONS-2: Optical Data Center Networking

Agenda

- Introduction to problem
 - Motivation
 - Electricity market
 - Formal statement
 - Power consumption model
- Proposed algorithm
 - Dynamic Workload-Aware VM Placement and Migration
- Results
- Summary and future work

Geographically distributed data centers

Source: http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/

3 5/26/2017

Annual electricity cost

Company	Servers	Electricity	Cost
eBay	16K	$\sim 0.6 \times 10^5$ MWh	\sim \$3.7M
Akamai	40K	$\sim 1.7 \times 10^5$ MWh	\sim \$10M
Rackspace	50K	$\sim 2 \times 10^5$ MWh	\sim \$12M
Microsoft	>200K	$>6\times10^5$ MWh	>\$36M
Google	>500K	$>6.3 \times 10^{5}$ MWh	>\$38M
USA (2006)	10.9M	610×10^5 MWh	\$4.5B
MIT campus		2.7×10^{5} MWh	62M

A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, "Cutting the electric bill for internet-scale systems," SIGCOMM '09, vol. 39, no. 4, pp. 123–134, Oct. 2009.

UCDAVIS

Electricity market

- 7 major ISOs/RTOs in USA
- Electricity cost varies over:
 - <u>time</u>
 - location

(mostly due to characteristics of power sources and supply /demand behavior)

Alberta Electric System Ontario Operator Independent Electric System Operator ISO New England Midcontinent ISO New York ISO California PJM Interconnection 150 Southwest Power Pool Electric Reliability Council of Texas

Source: http://www.isorto.org/about/default

Independent System Operator (ISO) Regional Transmission Organization (RTO)

5 5/26/2017

Variable electricity cost

A. Gupta, U. Mandal, P. Chowdhury, M. Tornatore and B. Mukherjee, "Cost-efficient live VM migration based on varying electricity cost in optical cloud networks", Photonic Network Communications, Sep 2015

Key concepts

- Exploit spatio-temporal variation of electricity prices for geographically-distributed data centers
 - Live VM migration
 - Service request re-routing (considering SLA!)
- Solution for dynamic scenarios
 - Most existing work on static/quasi-static scenarios
- Power model
 - Backbone network power consumption (due to VM migration)

Problem statement

DC power model

VM migration power model

Network nodes $P_{bn} = \sum_{i=1}^{K} n * P_{bit} * C_{i,j}$ (*n*= total # of bits, C_{i,j} cost of electricity)

DC + Network
$$P_V = P_{dc} + P_{bn}$$

VM migration $P_{VM} = P_V * (1 + \mu)$
Administrative overhead of managing VM migration

Algorithm

Dynamic Workload-Aware VM Placement and Migration (DWVPM)

10 5/26/2017

Novelties of approach

- Epoch makes the migration frequency variable
 - epoch dynamically adjusts migration frequency
- Dynamic service arrival and duration
 - We use practical values from DC workload traces studied in prior works
- Combination of backbone network and server power consumption
- Per-Rack VM consolidation in DCs which further reduces the electricity cost

Simulation setup

TABLE I. POWER COM	SUMPTION VALUES.	
Туре	Power consumption	
Server idle power consumption	90.9 Watt/hour [18]	
Server peak power consumption	527.8 Watt/hour [18]	
Power consumption in network node	1.108 × 10 ⁻⁵ W/bit [19]	
PUE	1.12 [20]	

[15] A. K. Mishra, et al., "Towards Characterizing Cloud Backend Workloads: Insights from Google Compute Clusters," ACM SIGMETRICS Performance Evaluation Review, 2010.

[16] T. Paul, et al., "The User Behavior in Facebook and its Development from 2009 until 2014," arXiv, 2015.

12 5/26/2017

Results: normalized cost vs. load

13 5/26/2017

Results: 24-hour variation on cost savings

Results: impact of epoch

UCDAVIS

16 5/26/2017

Summary and future work

- Spatio-temporal variation of electricity prices can help to minimize DC electricity cost significantly
- DWVPM optimizes DC electricity cost in dynamic scenarios
 - Savings in the orfer of 20-30%
- Future work:
 - Use of new virtualization platforms such as 'docker containers'
 - A-priori identification of the right "dynamicity"

