
Internet Traffic Classification
Using Machine Learning
Tanjila Ahmed
Dec 6, 2017

Agenda

1. Introduction
2. Motivation
3. Methodology
4. Results
5. Conclusion
6. References

Motivation
• Traffic classification is the categorizing of internet traffic according

to various applications
• It is needed for network engineering, management, and control as

well as other other analytics

[1]

Motivation
• Traditional techniques for traffic classification include port and

payload based analysis.
• Encrypted data and dynamic port assignments make it harder to

correctly identify the type of applications [2].
• Using a combinations of techniques for supervised and

unsupervised learning algorithms has shown promise for classifying
internet traffic [3].

• We wanted to explore how a K-mean clustering algorithm could be
used to classify internet traffic.

Methodology Overview
• Capturing the trace of known applications
• Filtering out the noise to isolate the flow of interest
• Analyze patterns in the trace to grab all relevant features
• Feature Selection and clustering the data points
• Analyzing the error to determine the right number of clusters and

fitting of the attributes
• Using those setting and data points as training data for another test

set

K-Means Algorithm
Unsupervised Learning Methods :

AutoClass [4], k-means [5] and DBSCAN [6]

K-mean : is the simplest to implement and least memory intensive [7].
Working process of it is very fast and robust [7]. Usually k-mean is
widely used for both network anomaly detection [8,9] and traffic
classification [6,10]. In [6] the authors made a qualitative comparison
among above mentioned three unsupervised ML algorithms showing
based on both accuracy and model building time k-mean gives the best
solution for traffic classification.

K-Means Algorithm
• Implementation

• Run the parsed data through the K-means
algorithm to form clusters based on random
positioning of the centroids

• Iterate through the positions of the centroids
until they converge

• Determine the RMS error
• Analysis

• Increase the number of centroids and until we
see small changes in the RMS error.

• This will give us an estimate of the correct
number of groupings.

K-Means Visualization

K-Means Algorithm
Using only k-mean algorithm is not sufficient for traffic classification.
Although it can group the traffic based on their flow features but cannot
identify the applications. Due to unavailability of labelled data and limitation of
k-mean to identify applications we decided to go for a semi-supervised ML
approach. Some of recent works [11,12] have shown some good progress using
this semi-supervised approach. Semi-supervised approach uses fewer labeled
data to predict traffic classes.

Training Set Vs Test Set
• By having a ground truth about the applications before running

them through the K-means algorithm we can estimate the correct
percentages in each cluster.

• We can’t know if these percentages correspond to the predicted
application.

• So we use this data as a training set vs a test set of new known
traces to see which cluster they fall into.

• This tell us type of application in each cluster

Result Generation Steps
Filtering
traces

Searching
pattern

Selecting
Features

Fixing number
of Centroids

Validating the
prediction

Tools Used: Wireshark, Weka

Trace Filtering and Pattern Search
Filtering the traces meant removing everything other than specific application
traffic in our wireshark capture.

1st approach :
• Applied a series of protocol filters to remove frames when wireshark was open

but the target applications weren’t running.
• Removal of 50- 75 % of all frames and made our trace incomplete
2nd Approach
• Using local ip and application port based filters we picked up more frames but

might have lost few important connections
• Still more accurate representation of the traffic being generated by the

application.

Feature Selection
• We had originally parsed out 9 features that were distinguishable

between all the traces
1. Number of Packets
2. min/max/avg packet length
3. duration
4. min/max/avg inter-arrival time
5. protocol

• Progressive selection
• With the applications we chose all 9 groupings seemed to give the

best accuracy for the number of clusters.

Feature Selection

Table 1 : Percentage of actual
groupings vs percentage of groupings
with 1 -9 features added

Application Original
grouping

Grouping using
features
K=4

Grouping
using features
k=5

Online Games 33% 49% 41%

Facebook
Messenger

31% 26% 29%

Youtube 21% 14% 15%

Download 13% 12% 9%

7%

K-Centroids
• The number of centroids was chosen based on an approximation method called the elbow

graphing.
• The number of centroids was increased from 2-7 to graphed vs Sum of Squared error in

each cluster
• When the change noticeably slows down with the increase of centroids an elbow forms

giving an approximation of the number of groupings

Fig. Elbow Graph
Approximation of the number
of Centroids

Accuracy of Predictions
• We were able to correctly match 3 out of the 4 applications with a

moderate rate of accuracy.
• “Download” traces were mis-grouped with Youtube and Facebook

Messenger.
• This was most likely due to the filtering used in the trace and the

type of download we were making.
• Similarities in used port (443 HTTPS) , protocol and long packet

lengths.
• These were our some of the most weighted feature selections.

Accuracy of Predictions
Applications Groups Test 1 :

Youtube
Test 2 :
Online
Games

Test 3:
Facebook
Messenger

Test 4:
Download

Youtube 0 64% 14% 13% 42%

Download 1 11% 12% 0% 8%

Online
Games

2 5% 49% 0% 9%

Facebook
Messenger

3 20% 26% 87% 42%

Accuracy of Predictions
Applications Actual Testset

Grouping
Predicted Testset
Grouping

Actual number of flows
in testset

Predicted number of
flows in testset

Youtube 20.3% 25% 81 100

Download 19.8% 10% 79 39

Online Games 31.1% 37% 124 147

Facebook Messenger 28.8% 28% 115 113

Conclusion
Factors needed to be carefully tuned for accurate internet traffic class
predictions :

1. Large and diverse enough sample set to make sure you have enough
data for groupings

2. Filtering the traces to remove the noise is crucial in order to form a
reliable baseline for your training set

3. Tuning the feature selection and the number of K-centroids can
have drastic effects on the resulting groupings

References
[1] EEC 274 lecture notes from Prof. Chen-neh Chuah.
[2] L. Yingqiu, L. Wei, L. Yunchun, 2007, Network Traffic Classification Using K-Means Clustering, Network Technology Key Lab of Beijing,
[3] Nguyen, Thuy TT, and Grenville Armitage. "A survey of techniques for internet traffic classification using machine learning." IEEE
Communications Surveys & Tutorials 10, no. 4 (2008): 56-76.
[4] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification and application identification using machine learning,” in Proc.
2005 IEEE Conference on Local Computer Networks, pp. 250–257.
[5] J. Erman, A. Mahanti, and M. Arlitt, “Internet traffic identification using machine learning,” in Proc. 2006 IEEE Global Telecommunications
Conference, pp. 1–6.
[6] Erman, Jeffrey, Martin Arlitt, and Anirban Mahanti. "Traffic classification using clustering algorithms." In Proceedings of the 2006
SIGCOMM workshop on Mining network data, pp. 281-286. ACM, 2006. 
[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, pp. 50–58, Apr. 2010.
[8] R. Kumari, M. K. Singh, R. Jha, and N. K. Singh. "Anomaly detection in network traffic using K-mean clustering." In Recent Advances in
Information Technology (RAIT), 2016 3rd International Conference on, pp. 387-393. IEEE, 2016.
[9] Y. Shi, X. Peng, R. Li, and Y. Zhang. "Unsupervised Anomaly Detection for Network Flow Using Immune Network Based K-means
Clustering." In International Conference of Pioneering Computer Scientists, Engineers and Educators, pp. 386-399. Springer, Singapore, 2017.

