TDM E-PON Front-haul Capacity Improvement Through Traffic Classification and Sifting

Post OFC Workshop

Yu Wu 03/27/2017

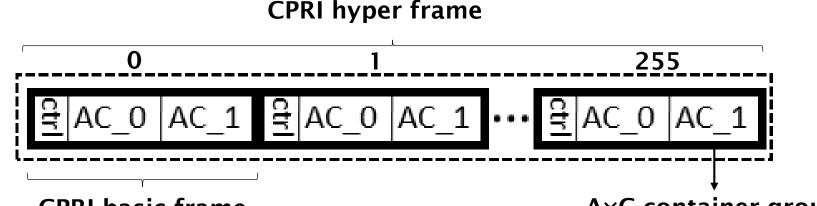
D TDM E-PON Front-haul Architecture

- Proposed Bandwidth Allocation Solution
- **Results**

- In 5G, Cloud Radio Access Network (C-RAN) is proposed to disperse the light-weighted radio equipment (a.k.a Remote Radio Heads (RRHs)) and centralize Base Band processing Unit (BBU). The connection between RRHs and BBU is called front-haul link and carried mostly by Common Public Radio Interface (CPRI).
- Dedicated Fiber between each RRH and paired BBU increases cost. Researchers have proposed to utilize multiplexing gain of TDM Ethernet PON (E-PON) to save cost.
- The proliferation of Internet of Thing (IoT) applications and deployment of Multiple Input Multiple Output (MIMO) antennas in RRHs increase fronthaul capacity demand and thus make multiplexing gain of TDM E-PON marginal.

- CPRI data compression techniques have been explored to address the problem of marginal multiplexing gain due to high CPRI line rate.
- Potential Drawbacks:
 - Computationally expensive (extra delays)
 - \circ Compression ratio up to 0.5
- The origin of our idea:
 - $\,\circ\,$ Mobile users do not communicate with RRHs all the time
 - RRHs do need to detect and sample all the time
 - Obtained data could be either useful or useless
 - $\,\circ\,$ Detect and discard useless data when transmitting at E-PON

D TDM E-PON Front-haul Architecture

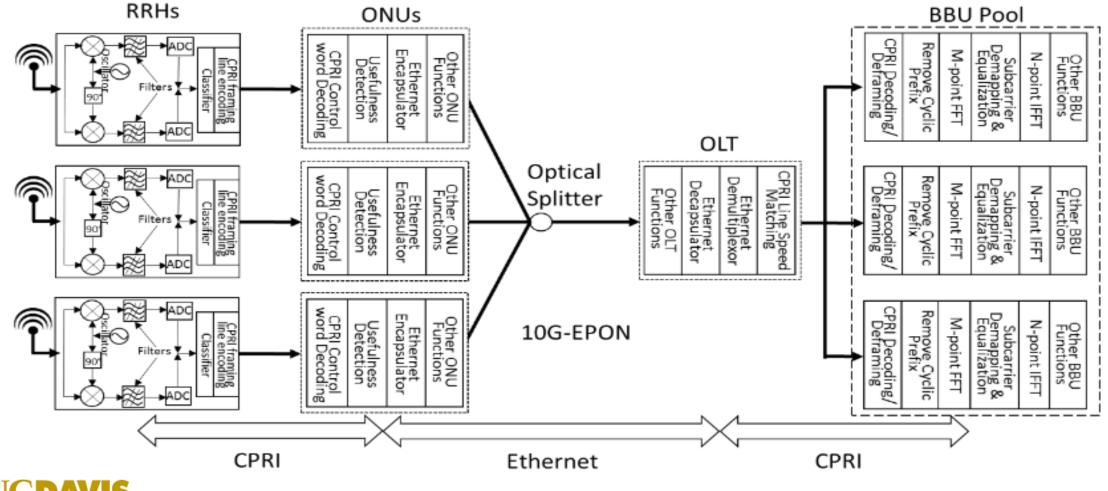

Proposed Bandwidth Allocation Solution

Results

TDM E-PON Front-haul Architecture

• CPRI basic frame and hyper frame

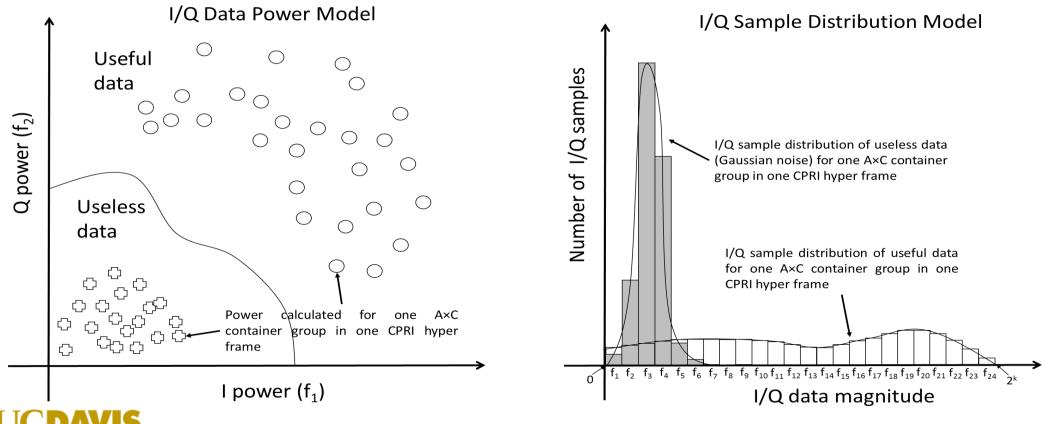
CPRI basic frame 16 words: 1 ctrl + 15 payload A×C container group


- Ethernet frame
 - Max payload: 1500 bytes
 - Header: 26 bytes
 - Inter-packet gap: 12 bytes

UCDAVIS UNIVERSITY OF CALIFORNI

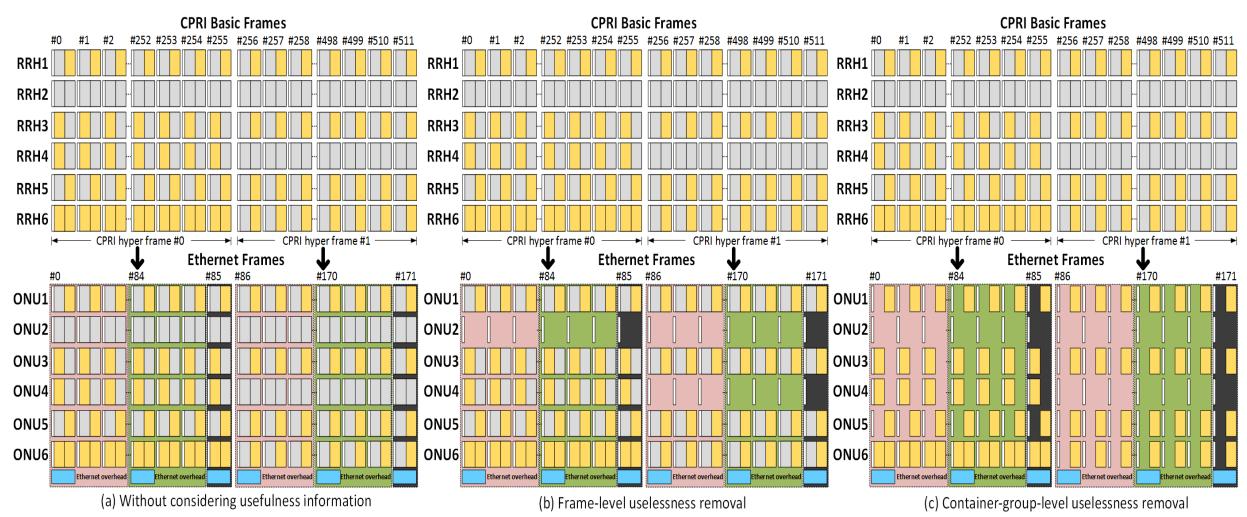
Example:

- 20MHz 2×2 MIMO-enabled LTE RRH
- CPRI line rate: 2.46 Gbps
- CRPI word length: 32 bits
- Number of IQ samples per container group: 8

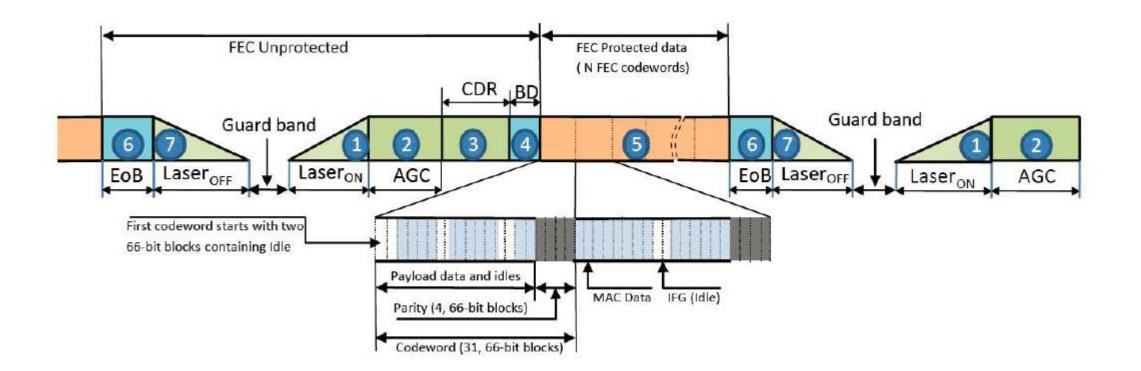

TDM E-PON Front-haul Architecture

TDM E-PON Front-haul Architecture

Traffic classification



D TDM E-PON Front-haul Architecture


- Proposed Bandwidth Allocation Solution
- **Results**

Proposed Bandwidth Allocation Solution

Roy, Rajesh, et al. "10G-EPON efficiency." *Advanced Networks and Telecommunication Systems (ANTS).* IEEE, 2009.

Proposed Bandwidth Allocation Solution

CPRI basic frame 0 - 2		
CPRI basic frame 3 - 5	Ethernet Frame 0	
	Ethernet Frame 1	CPRI basic frame 0 - 2
CPRI hyper		CPRI basic frame 3 - 5
frame #0		
CPRI basic frame 249 - 251 CPRI basic frame 252 - 254 255	:	:
CPRI basic frame 256 - 258 CPRI basic frame 259 - 261		
CPRI hyper	Ethernet Frame 83	
	Ethernet Frame 84 85	CPRI basic frame 250 - 252
frame #1	Ethernet Frame 86	CPRI basic frame 252 - 254 255
	Ethernet Frame 87	CPRI basic frame 256 - 258
CPRI basic frame 505 - 507 CPRI basic frame 508 - 510 511		CPRI basic frame 259 - 261
	:	:
	Ethernet Frame 169	
	Ethernet Frame 170 171	CPRI basic frame 505 - 507
	F	CPRI basic frame 508 - 510 511
,		

(a) Without considering usefulness information

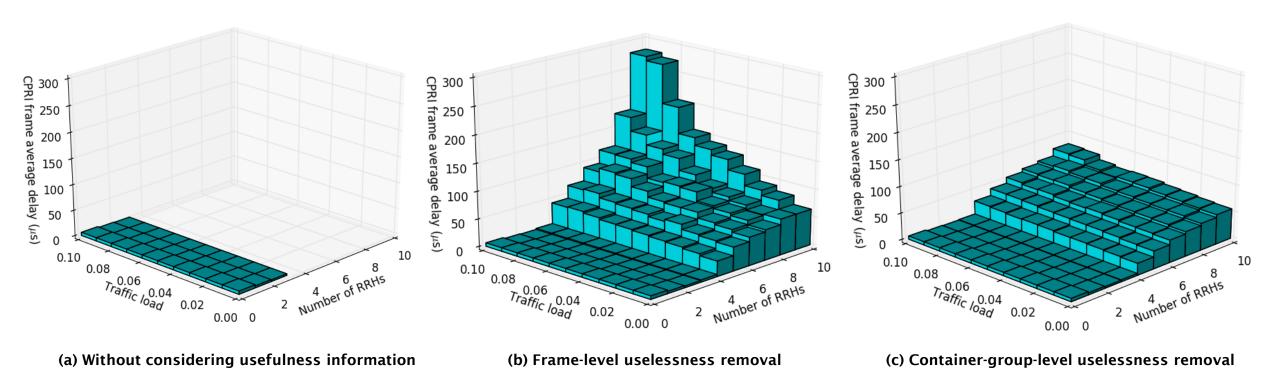
CPRI basic frame 0 - 2		
CPRI basic frame 3 - 5	Ethernet Frame 0	
	Ethernet Frame 1	CPRI basic frame 0 - 2
CPRI hyper		CPRI basic frame 3 - 5
frame #0	÷	:
CPRI basic frame 249 - 251	Ethernet Frame 54	
CPRI basic frame 252 - 254 255	Ethernet Frame 55	CPRI basic frame 162 - 164
CPRI basic frame 256 - 258	Ethernet Frame 56	CPRI basic frame 165 - 167
CPRI basic frame 259 - 261	Ethernet Frame 57	CPRI basic frame 168 - 170
		CPRI basic frame 171 - 173
CPRI hyper	Ethernet Frame 84 85	
	Ethernet Frame 86	CPRI basic frame 252 - 254 _ 255
frame #1	Ethernet Frame 87	CPRI basic frame 256 - 258
	1	CPRI basic frame 259 - 261
CPRI basic frame 505 - 507 CPRI basic frame 508 - 510 511	Ethernet Frame 116	:
	Ethernet Frame 117	CPRI basic frame 346 - 348
	Ethernet Frame 118	CPRI basic frame 349 - 351
	Ethernet Frame 119	CPRI basic frame 352 - 354
		CPRI basic frame 355 - 357
	Ethernet Frame 169	•
	Ethernet Frame 170 171	CPRI basic frame 505 - 507
		CPRI basic frame 508 - 510 511
	,	,

(b) Frame-level uselessness removal

CPRI basic frame 0 - 2		
CPRI basic frame 3 - 5	Ethernet Frame 0	
	Ethernet Frame 1	CPRI basic frame 0 - 2
CPRI hyper	Lufemet Hame I	CPRI basic frame 3 - 5
СЕКПУрег		cr tr basic traine 5 - 5
frame #0	:	
france #0		:
CPRI basic frame 249 - 251	Ethernet Frame 54	
CPRI basic frame 249 - 251 CPRI basic frame 252 - 254 255	Ethernet Frame 55	CPRI basic frame 162 - 164
CPRI basic frame 256 - 258		
CPRI basic frame 259 - 261	Ethernet Frame 56 Ethernet Frame 57	CPRI basic frame 165 - 167 CPRI basic frame 168 - 170
		CPRI basic frame 168 - 170 CPRI basic frame 171 - 173
CDDL human	Ethernet Frame 8 <u>4</u> 85	CPRI basic frame 252 - 254 255
CPRI hyper	Ethernet Frame 86	
frame #1	Ethernet Frame 87	CPRI basic frame 256 - 258
frame #1	•	CPRI basic frame 259 - 261
	:	•
CPRI basic frame 505 - 507 CPRI basic frame 508 - 510 511	Ethernet Frame 125	•
CPRI Dasic Iraine 508 - 510 - 511	Ethernet Frame 126	CPRI basic frame 373 - 375
		CPRI basic frame 376 - 378
	Ethernet Frame 127 Ethernet Frame 128	CPRI basic frame 379 - 381
	thernet Frame 169 Fthernet Frame 170 171	CPRI basic frame 382 - 384
	Ethernet Frame 170 171	
		CPRI basic frame 508 - 510
		CPRI basic frame 505 - 507 511
V 1		
,	,	

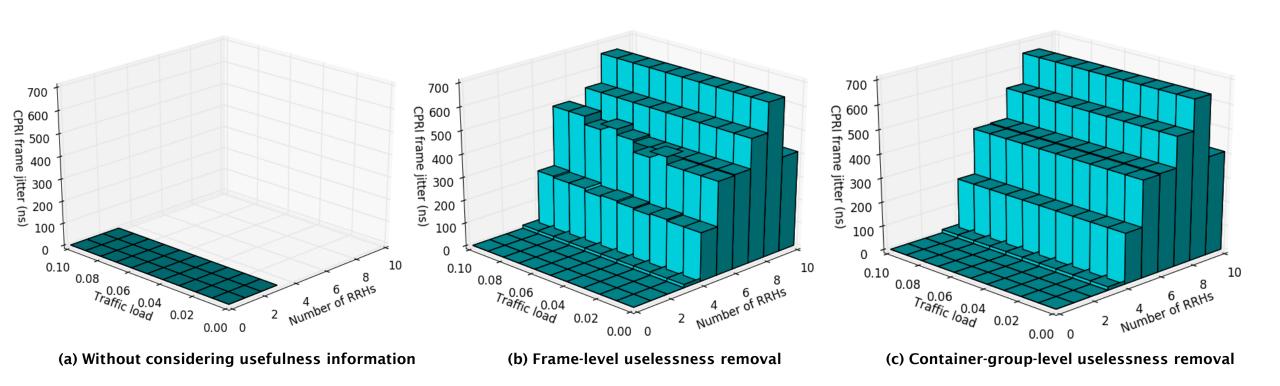
(c) Container-group-level uselessness removal

D TDM E-PON Front-haul Architecture


Proposed Bandwidth Allocation Solution

Results

Results


Delay

Results

Jitter

D TDM E-PON Front-haul Architecture

- **Proposed Bandwidth Allocation Solution**
- **Results**

- Without traffic classification and sifting, the number of RRHs attached to the same E-PON is small.
- Container-group-level uselessness removal performs better than frame-level uselessness removal in terms of CPRI frame average delay when traffic load and number of RRHs increase.
- Both mechanisms achieve similar jitter performance.

Thank you for your attention !

Questions and feedbacks are welcomed

