### Virtual Mobile Core Placement for Metro Area

BY ABHISHEK GUPTA FRIDAY GROUP MEETING JANUARY 5, 2018



#### **Motivation**

- Volume of data to be transported across a mobile network keeps increasing
- Traditional EPC is centralized and requires constant upgrading of mobile core (both EPC functions and backhaul)
- Network Function Virtualization (NFV) tries to resolve above challenges by virtualizing the mobile core (virtual EPC (vEPC))
- Distributing vEPC in the core reduces bandwidth consumption and is essential for Multi-Access Edge Computing (MEC)



#### Difference from previous work

- Mobile core is critical for connecting User Equipment (UE) to Internet and vice-versa
- Mobile core is also critical for functioning of the Radio Access Network (RAN)
- Here, Service Chain (SCs) result from looking at interaction of various mobile core elements whereas earlier SCs were actual value-added services



## Mobile Core Architecture (Evolved Packet Core (EPC))





4

#### Control and Data Plane Elements of EPC

- Exclusively Control Plane Elements
  - Mobility Management Element (MME)
  - Policy and Charging Rules Function (PCRF)
  - Home Subscriber Server (HSS)
- · Data Plane Elements
  - Serving Gateway (SGW)
  - Packet Data Network Gateway (PGW)







- Traffic passes from UE to PGW (upload) or from PGW to UE (download)
- Setup of path requires control signaling (Non-Access Stratum (NAS) procedure)
- Control signaling is a set of chained requests which we realize as the control service chain
- Data path also requires the SGW->PGW traversal for download and PGW->SGW traversal for upload



#### **EPC Procedures Summary**

| Event Type                       | MME   | HSS   | S-GW  | P-GW   | PCRF  |     |
|----------------------------------|-------|-------|-------|--------|-------|-----|
| Attaches                         | 10    | 2     | 3     | 2      | 1     |     |
| Additional Default Bearer Setups | 4     | 0     | 3     | 2      | 1     |     |
| Dedicated Bearer Setups          | 2     | 0     | 2     | 2      | 1     |     |
| Idle-to-Connected Transitions    | 3     | 0     | 1     | 0      | 0     |     |
| Conntected-to-Idle               | 3     | 0     | 1     | 0      | 0     |     |
| X2-based Handovers               | 2     | 0     | 1     | 0      | 0     |     |
| S1-based Handovers               | 8     | 0     | 3     | 0      | 0     |     |
| Tracking Area Updates            | 2     | 0     | 0     | 0      | 0     |     |
| Total                            | 34    | 2     | 14    | 6      | 3     |     |
| TABLE I. TRANSACTIO              | N PER | NAS I | EVENT | by EPC | ELEME | ENT |





Fig. 1. Traditional cellular EPC with logical interfaces [3] Understanding the bottlenecks in Virtualizing Cellular Core Network Functions - Intel Labs, Connectem, AT&T Labs

7

#### Network Attach Procedure



| JE    | eNodeB               |        | MME |
|-------|----------------------|--------|-----|
|       | NAS Identity Re      | pq     |     |
|       | NAS Identity Rs      | sp     |     |
| -     | NAS Authentication   | Req    | _   |
|       | NAS Authertication   | n Rsp  |     |
| -     | NAS Security Mode Co | ommand |     |
| 0.000 | NAS Security Mode    | Comp   |     |

Figure 10. NAS Common Procedures



#### **Chained Requests (Control Plane)**





SGW (1)

#### Chained Requests (Control Plane + Data Plane)



1] Introduction to Evolved Packet Core (EPC) - EPC elements, protocols and procedures -

10

#### vEPC placement



#### **Problem Statement**

- To determine the placement of mobile core element VNFs and traffic routing to minimize the network-resource (bandwidth) consumption, given:
  - Network topology, capacity of links
  - Set of NFV nodes
  - Number of NFV nodes that can be used
  - Aggregated traffic flows
    - Using a Non-Access Stratum (NAS) procedure (attach, handover)
    - · Requesting a service (voice, video, data)
    - Downlink/Uplink
  - Number of Replicas of each VNF
  - Latency requirement of services
  - Latency requirement of control signaling
  - Processing delay of VNFs
  - Propagation delay



#### Output

- Location of vEPC elements
- Routing of traffic flows to/from application gateway from/to Traffic Aggregation Points (TAPs)



#### Continued...

• Aggregated traffic flows from and to Traffic Aggregation Points (TAPs) with data plane traffic (D) and control plane traffic being a fraction of it (x\*D)

· Download with NAS procedure (DNAS)



• Upload with NAS procedure (UNAS)



**Control Plane Service Chain** 

Data Plane Service Chain



#### Continued...

• Download (DL)



Data Plane Service Chain

• Upload (UL)



Data Plane Service Chain



#### Continued..

 To simplify modeling, each aggregated traffic flow, NAS procedure, uplink/downlink, application request is considered a distinct service chain, where source (s) and destination (d) are also VNFs with location constraints



#### Latency

- Control Plane Latency
  - Bearer Setup Latency
    - Default Bearer (Attach NAS Procedure) 500ms
    - · Dedicated Bearer (Service Request NAS Procedure) 250 ms



- The PGW needs to support fine-granularity of QoS and charging enforcement functions beyond transport / bearer level
  - Multiple Service Data Flow (SDF) can be aggregated onto a single EPS bearer
  - Uplink and downlink packet filters are defined for each bearer, and QoS enforcements
    - are applied



[1] Introduction to Evolved Packet Core (EPC) – EPC elements, protocols and procedures – Alcatel Lucent

#### Continued...

- · Data Plane Latency
  - · Propagation delay
  - Processing delay

| no. of Tunnels            | 10           | 100          | 1 K           | 10 K          |
|---------------------------|--------------|--------------|---------------|---------------|
| bits/sec                  | 1 M          | 10 M         | 100 M         | 1 G           |
| packets/sec               | 83           | 830          | 8.3 K         | 83 K          |
| Virtualized GW $T_{proc}$ | $62 \ \mu s$ | $83 \ \mu s$ | $109 \ \mu s$ | $132 \ \mu s$ |
| Decomposed GW $T_{proc}$  | $15 \ \mu s$ | $15 \ \mu s$ | $15 \ \mu s$  | $15 \ \mu s$  |

Table 1: Mean packet processing delay



#### **Delay Budget for Applications**

#### Delay Budget for Applications-3GPP TR23.401 V8.1.0

| QCI<br>Value     | Resource<br>Type | Priority | Delay<br>Budget <sup>(1)</sup> | Error Loss<br>Rate (2) | Example Services                                                                                                     |
|------------------|------------------|----------|--------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1 <sup>(3)</sup> |                  | 2        | 100 ms                         | 10 <sup>-2</sup>       | Conversational Voice                                                                                                 |
| 2 (3)            | GBR              | 4        | 150 ms                         | 10 <sup>-3</sup>       | Conversational Video (Live Streaming)                                                                                |
| 3 <sup>(3)</sup> |                  | 3        | 50 ms                          | 10 <sup>-3</sup>       | Real Time Gaming                                                                                                     |
| 4 (3)            |                  | 5        | 300 ms                         | 10 <sup>-6</sup>       | Non-Conversational Video (Buffered<br>Streaming)                                                                     |
| 5 <sup>(3)</sup> |                  | 1        | 100 ms                         | 10 <sup>-6</sup>       | IMS Signalling                                                                                                       |
| 6 <sup>(4)</sup> |                  | 6        | 300 ms                         | 10 <sup>-6</sup>       | Video (Buffered Streaming)<br>TCP-based (e.g., www, e-mail, chat, ftp, p2p<br>file sharing, progressive video, etc.) |
| 7 (3)            | Non-GBR          | 7        | 100 ms                         | 10 <sup>-3</sup>       | Voice, Video (Live Streaming), Interactive<br>Gaming                                                                 |
| 8 (5)            |                  | 8        | 300 ms                         | 10 <sup>-6</sup>       | Video (Buffered Streaming)<br>TCP-based (e.g., www, e-mail, chat, ftp, p2p<br>sharing, progressive download, etc.)   |
| 9 (6)            |                  | 9        |                                |                        |                                                                                                                      |



#### **Traffic Per Application**

| NG40 load profile packet rate calculations |                                  |                        |                                   |                         |                            |                             |  |
|--------------------------------------------|----------------------------------|------------------------|-----------------------------------|-------------------------|----------------------------|-----------------------------|--|
| Downlink                                   |                                  |                        |                                   |                         |                            |                             |  |
| Packet rate/<br>1000sec                    | Number of user/<br>traffic group | Packet size<br>(Bytes) | Overhead S1u +<br>mac + eth Bytes | Packet rate<br>Pkts/sec | L3 (IP) throughput<br>Mb/s | L2 (eth) throughput<br>Mb/s |  |
| 26,963                                     | 10,000                           | 64                     | 74                                | 269,630                 | 138.051                    | 297.672                     |  |
| 56,800                                     | 10,000                           | 1426                   | 74                                | 568,000                 | 6,479.744                  | 6,816.000                   |  |
| 3638                                       | 10,000                           | 1426                   | 74                                | 36,380                  | 415.023                    | 436.560                     |  |
| 15,285                                     | 10,000                           | 1000                   | 74                                | 152,850                 | 1,222.800                  | 1,313.287                   |  |
| 10,854                                     | 10,000                           | 1000                   | 74                                | 108,540                 | 868.320                    | 932.576                     |  |
|                                            | Average                          | 1004                   |                                   | 1,135,400               | 9,123.938                  | 9,796.094                   |  |
|                                            |                                  | Overhead %             | 7.37%                             |                         |                            |                             |  |
| Uplink                                     | Uplink                           |                        |                                   |                         |                            |                             |  |
| 13,482                                     | 10,000                           | 64                     | 74                                | 134,820                 | 69.028                     | 148.841                     |  |
| 28,400                                     | 10,000                           | 1426                   | 74                                | 284,000                 | 3,239.87                   | 3,408.000                   |  |
| 1819                                       | 10,000                           | 1426                   | 74                                | 18,190                  | 207.512                    | 218.280                     |  |
| 7643                                       | 10,000                           | 1000                   | 74                                | 76,430                  | 611.44                     | 656.687                     |  |
| 5427                                       | 10,000                           | 1000                   | 74                                | 54,270                  | 434.16                     | 466.288                     |  |
|                                            | Average                          | 1004                   |                                   | 567,710                 | 4,562.01                   | 4,898.10                    |  |
|                                            |                                  |                        |                                   |                         | Overhead %                 | 7.37%                       |  |
|                                            |                                  | Subscri                | ber busy hour user p              | lane traffic mod        | lel                        |                             |  |
| User plane tra                             | affic type                       |                        |                                   |                         | Share of                   | tonnage %                   |  |
| Progressive video                          |                                  |                        |                                   |                         | 71.19%                     |                             |  |
| Video conferencing                         |                                  |                        |                                   |                         | 4.5                        | 56%                         |  |
| VOIP                                       |                                  |                        |                                   |                         | 1.5                        | 50%                         |  |
| Media downloads                            |                                  |                        |                                   |                         | 13.                        | .30%                        |  |
| Non-real-time                              | applications (web, en            | nail)                  |                                   |                         | 9.4                        | 45%                         |  |
| Total                                      |                                  |                        |                                   |                         | 100.00%                    |                             |  |

#### Delay Budget for Applications-3GPP TR23.401 V8.1.0

| QCI<br>Value     | Resource<br>Type | Priority | Delay<br>Budget <sup>(1)</sup> | Error Loss<br>Rate (2) | Example Services                                                                                                     |
|------------------|------------------|----------|--------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1 <sup>(3)</sup> |                  | 2        | 100 ms                         | 10 <sup>-2</sup>       | Conversational Voice                                                                                                 |
| 2 (3)            | GBR              | 4        | 150 ms                         | 10 <sup>-3</sup>       | Conversational Video (Live Streaming)                                                                                |
| 3 (3)            |                  | 3        | 50 ms                          | 10 <sup>-3</sup>       | Real Time Gaming                                                                                                     |
| 4 (3)            |                  | 5        | 300 ms                         | 10 <sup>-6</sup>       | Non-Conversational Video (Buffered<br>Streaming)                                                                     |
| 5 <sup>(3)</sup> |                  | 1        | 100 ms                         | 10 <sup>-6</sup>       | IMS Signalling                                                                                                       |
| 6 (4)            |                  | 6        | 300 ms                         | 10 <sup>-6</sup>       | Video (Buffered Streaming)<br>TCP-based (e.g., www, e-mail, chat, ftp, p2p<br>file sharing, progressive video, etc.) |
| 7 <sup>(3)</sup> | Non-GBR          | 7        | 100 ms                         | 10 <sup>-3</sup>       | Voice, Video (Live Streaming), Interactive<br>Gaming                                                                 |
| 8 (5)            |                  | 8        | 300 ms                         | 10 <sup>-6</sup>       | Video (Buffered Streaming)<br>TCP-based (e.g., www, e-mail, chat, ftp, p2p<br>sharing, progressive download, etc.)   |
| 9 (6)            |                  | 9        |                                |                        |                                                                                                                      |

Table 2. NG40 D/L. U/L packet rate calculations and user plane traffic model.



#### **Simulation Settings**



#### CPU-to-throughput Relationship (2 CPUs/Gbps)

Table 1: Examples of Brocade vEPC performance with different numbers of physical cores.

|                              |                                          | 21 cores <sup>1</sup> | 36 cores <sup>1</sup> | 54 cores <sup>1</sup> |
|------------------------------|------------------------------------------|-----------------------|-----------------------|-----------------------|
| Control Plane<br>Performance | Simultaneous<br>Attached Users<br>(SAUs) | 1 million             | 2 million             | 3 million             |
|                              | Number of bearers                        | 1.2 million           | 2.4 million           | 3.6 million           |
|                              | Attaches per second                      | 3,500                 | 7,000                 | 10,500                |
| Data Plane<br>Performance    | Throughput <sup>2</sup> (Gbps)           | 10                    | 20                    | 30                    |

Notes:

<sup>1</sup> Physical cores.

<sup>2</sup> Throughput measured with IMIX traffic.



### Traffic flow generation

- Busy hour tonnage : 224 Gb [5]
- Upload/Download ratio : 0.25

| NAS event                         | Number of flows |
|-----------------------------------|-----------------|
| Attach                            | 10              |
| Service Request                   | 45              |
| X2-based                          | 5               |
| S1-based                          | 10              |
| No NAS event<br>(pure data plane) | 50              |

| Market design parameters                    |                               |                           |  |  |  |
|---------------------------------------------|-------------------------------|---------------------------|--|--|--|
|                                             | Operational<br>network values | Empirical values emulated |  |  |  |
| Number of<br>subscribers in<br>market       | 50,000                        | 50,000                    |  |  |  |
| Busy hour<br>tonnage (GB)                   | 224                           | 119                       |  |  |  |
| Default bearers<br>(APNs) per<br>subscriber | 2.5                           | 1.0                       |  |  |  |
| Total number of<br>default bearers          | 125,000                       | 50,000                    |  |  |  |
| Number of<br>eNodeBs in<br>market           | 400                           | 4                         |  |  |  |
| Number of<br>eNodeBs per TA                 | 30                            | 4                         |  |  |  |

| Subscriber busy hour control plane signaling model |                                  |                                          |                                         |  |  |
|----------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------------------|--|--|
| Control plane<br>event type                        | Number of<br>busy hour<br>events | Operational<br>network rate<br>(event/s) | Empirical rate<br>emulated<br>(event/s) |  |  |
| Attach                                             | 10,000                           | 3                                        | 1000                                    |  |  |
| Bearer setups                                      | 225,000                          | 63                                       | 1000                                    |  |  |
| Connected-to-<br>idle transitions<br>(inactivity)  | 225,000                          | 63                                       | 1000                                    |  |  |
| X2-based<br>handovers                              | 200,000                          | 56                                       | 1000                                    |  |  |
| S1-based<br>handovers                              | 5000                             | 1                                        | 1000                                    |  |  |
| Tracking area<br>updates<br>(mobility)             | 10,000                           | 3                                        | 1000                                    |  |  |
| Detach                                             | 10,000                           | 3                                        | 1000                                    |  |  |

Table 1. Market design and signaling model.

- Traffic aggregation aggregates1000-5000 UEs
- Application traffic separation as per [5]



#### Other simulation parameters

- Per link bandwidth: 60 Gb
- · CPU Cores per node: 2400
- Control traffic: 5%
- Simulation runs are done 10 times and the mean across the iteration is plotted



# Reduction in bandwidth consumption as replicas increase





## Not all EPC VNFs need to be distributed (only SGW, PGW)





Not all EPC VNFs need to be distributed (only SGW, PGW)



