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Motivation

Traffic demand increasing in datacenter networks

Cloud-service, parallel-computing, etc., lead to huge amount of
intra datacenter traffic growth.

Cisco forecasts 31% increase per year of datacenter traffic by 2021

» Within data center
W Data center to data center
m Data center to user I

Datacenter traffic loads is growing

Slide 1

UCDAVIS



Oct. 5, 2018

Contributions of this work

Apply long-range dependence (LRD) properties to
model intra-data center network traffic.

Based on the study of traffic in intra-data center,
propose a new concept of traffic classes by defining
five different applications typically hosted by cloud
data centers.

Evaluate performance of different services running
on traditional and hybrid electro-optical Fat-Tree
architectures.
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Traffic in intra-data center

Long- range dependence (LRD):

Machine-generated data, display a high burstiness and an extreme
variability over a wide range of time scales, characterized by intense
spurts of activity and traffic bursts, which can last from milliseconds to

hours and days.
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Fig.1. Comparison of long-range dependence (LRD) versus short-
range dependence (SRD) behaviors and their corresponding traffic
burstiness. Notice the nature and the variation range of the gen-
erated data volumes (data rates) from the mean value of the two
data types.
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Traffic in intra-data center

Long- range dependence (LRD):

Machine-generated data, display a high burstiness and an extreme
variability over a wide range of time scales, characterized by intense
spurts of activity and traffic bursts, which can last from milliseconds to
hours and days.
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Fig. 2. LRD traffic generation model based on chaotic mapping
introduced in Eq. (3). Notice the blue dots corresponding to non-
generation instances (OFF) in the range [0, 0.5] and the blue dots
representing data generation patterns (ON) within the range
(0.5, 1). For this mapping, the total number of simulated states is
N = 200, whereas the intermittency coefficients are m; = my = 2.
The threshold is set to d = 0.5 (green normal) for an equiprobable
distribution of generation and non-generation instances.
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Traffic Generation in intra-data center
Apply Chaotic Map Model to generate traffic

Elephant flows
LRD characteristic brings the heavy-tailed distribution to the table and
result in high traffic intensities (green circle).

Mice flows

Self-similarity property results in a high variability of the data rate around
the mean value, which comes in the form of traffic bursts and fast
changing spurts of activity (red circle)
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Fig. 3. Server traffic generation as an LRD process (m; = my = 2, d = 0.5) mapped into Data volume = f(¢). The burstiness of data
traffic is clearly visible, with two traffic patterns being distinguishable. The mice (red circle) appear as traffic bursts and spikes with
a high variability, which are typically characterized by data streams intended for different destinations. The second pattern is an elephant
(green circle) defined as a data transfer with a high payload and a much longer duration in time, normally addressed for one single
destination (P2P).
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Traffic Generation in intra-data center
Apply Chaotic Map Model to generate traffic
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Fig. 4. Mice versus elephants generation probabilities (P, and
P,,) as a function of d. With the increase of the threshold parameter
d, the traffic generation probability decreases, which leads to a
lower probability for elephant occurrence and the prevalence of
mice over elephants. The opposite is valid for lower values of d.
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Traffic Classes in intra-data center

Five different traffic classes in intra-data center

TABLE I
TRAFFIC CLASSES AND THEIR GENERATION PARAMETERS
Inter-Rack
Traffic
Application Class TrafficNature [28,29] d  Rupp/Rigt
Web mice > eleph 68.0% 0.9 19%
Data storage mice ~ eleph 65.2% 0.5 18%
Data mining eleph > mice 84.2% 0.3 23%

Social networking mice > eleph 88.6% 0.7 24%
Video streaming eleph > mice 60.0% 0.2 16%
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Intra-data Center architectures

- Traditional electrical Fat-tree intra-data center architecture

- Hybrid electro-optical Fat-Tree architecture
(a) == e S =

Core

Data Storage Data Mining

S — Server

ToR — Top-of-Rack Switch
Agg. — Aggregation Switch
Core — Core Switch/Router
OCS ~ Optical Circuit Switch

(b)

— 400 Gbps
——— 100 Gbps
——— 10 Gbps

Fig. 5. Electrical Fat-Tree intra-data center network (a) before and (b) after optimization. Notice the partial substitution of the EPS grid

with the OCS layer.
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Intra-data Center architectures

Traditional electrical Fat-tree intra-data center architecture
Hybrid electro-optical Fat-Tree architecture

TABLE 11
DCN ARrcHITECTURE BEFORE (E) AND AFTER (H) OPTIMIZATION
Device Interface/Throughput >, E/H
Server SFP+/10 Gb/s 32,000
ToR SB: SFP+ /32 x 10 Gb/s 1,000

NB: QSFP28/2 x 100 Gb/s (E)
NB: QSFP28/3 x 100 Gb/s (H)

Aggregation SB: QSFP28/32 x 100 Gb/s 63/38
NB: CFP8/5 x400 Gb/s

Core SB: CFP8/15 x 400 Gb/s 21/13

OCS 800 ports 0/1
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Simulations

- Evaluate blocking probability performance of five different traffic
classes in intra-data center.
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Fig. 6. Simulation of the five different services at the ToR layer. Due to offloading of elephants through the OCS layer, a noticeable
relaxation in the EPS grid follows (black curves). The interface serving the elephants remains highly busy as in the pure electrical ar-
chitecture due to their aggregated intensity.
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Simulations

Evaluate throughput performance of five different traffic classes in
intra-data center.
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Fig. 8. (a),(c)-(f) Simulation of the five different services at the ToR and (b), (g)-(j) aggregation layers. The mean throughput utilization 5

in the traditional Fat Tree (a), (b) reaches saturation fastest for elephant-dominated applications. With migration to the hybrid Fat Tree
(¢)-(j) and offloading of elephants through the OCS layer, a significant alleviation of throughput utilization in both layers is noticed. The

red horizontal lines indicate the maximal available bandwidth.
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Simulations

Evaluate cost for traditional and hybrid electro-optical Fat-Tree
architectures

TABLE IV
TABLE III CAPEX anp OPEX Berore (LEFT) AND AFTER (RIGHT)
RELATIVE Prices pER ONE UNIT OF EQUIPMENT OPTIMIZATION
Component Cost, p.u. Energy, W Electric Hybrid
ToR switch (2/3 NB ports) 1/1.1 190/200 Total Total Total Total
Aggr. switch 8 750 Cost, Energy, Cost, Energy,
. Components p-u. kW p-u. kW
Core switch 8 750
OCS 40 100 ToR 1000 190 1100 200
SFP+ 1 1 Aggregation 504 47.2 304 28.5
QSFP28 10 33 Core 168 15.7 104 9.7
CFP8 50 12 OCS — — 40 0.1
>, Switches 1672 252.9 1548 238.3
SFP+ 32000 32 32000 32
QSFP28 40160 13.2 40160 13.2
CFP8 31500 7.5 19250 4.6
>, Pluggables 103660 52.7 91410 49.8
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Simulations

Evaluate cost for traditional and hybrid electro-optical Fat-Tree
architectures

Switch CapEx, p.u. Switch OpEx, kW
1700 5i
TABLE IV 200
CAPEX anp OPEX BEerore (LEFT) AND AFTER (RIGHT) 1600 250
OPTIMIZATION 245
" . - 240
Electric Hybrid 1500
235
Totz?l Total Tote?l Total 1400 230
Cost, Energy, Cost, Energy, Electric Hybrid Electric Hybrid
Components p.u. kW p.u. kW
ToR . 1000 190 1100 200 Fig. 9. CAPEX and OPEX of switching hardware before and after
Aggregation 504 47.2 304 28.5 optimization.
Core 168 15.7 104 9.7
OCS — — 40 0.1
Z , Switches 1672 252.9 1548 238.3 o Pluggables CapEx, p.u. . Pluggables OpEx, kW
SFP+ 32000 32 32000 32 ) .
QSFP28 40160 13.2 40160 13.2 100 0
CFPS8 31500 7.5 19250 4.6 N
>, Pluggables 103660 52.7 91410 49.8 90 45
80 l 40
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Fig. 10. CAPEX and OPEX of pluggable components before and
after optimization.
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Questions?

amlwang@ucdavis.edu
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