Dynamic Routing and Spectrum Assignment in Co-Existing Fixed/Flex-Grid Optical Networks Tanjila Ahmed

Agenda

Dynamic Routing and Spectrum Allocation in Mixed-grid network
Extension Ideas :

- **1. Distance Adaptive Modulation Format**
- 2. Mixed Grid ROADM Architecture
- 3. Reduction of Fragmentation
- 4. Addition of Regenerators

Motivation

 Continuing attempts to squeeze more out of a single optical fiber, with technology advances

2.5 Gb/s ➡ 10 Gb/s ➡ 40 Gb/s 100 Gb/s

 Find route, spectrum, bit rate, modulation format and FEC for a given demand, optimized in some way to meet key criteria, such as minimal blocking, minimum cost, reduced fragmentation and many other possible criteria.

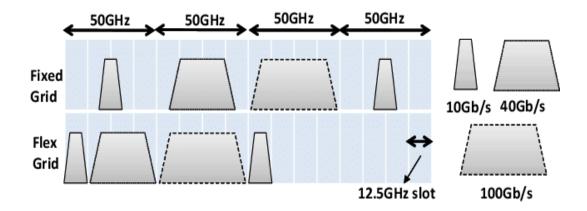
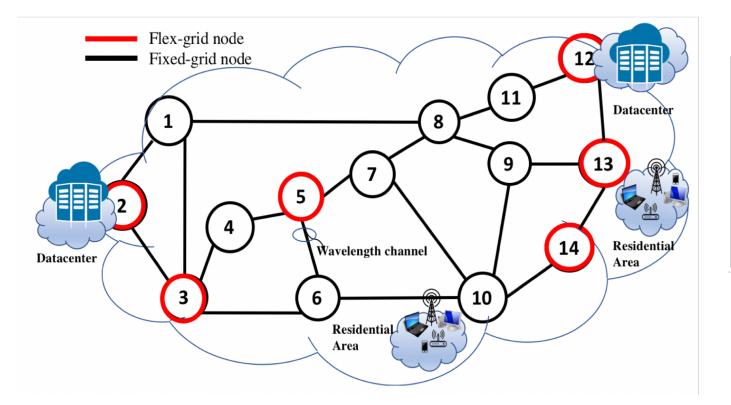



Image courtesy: [1]

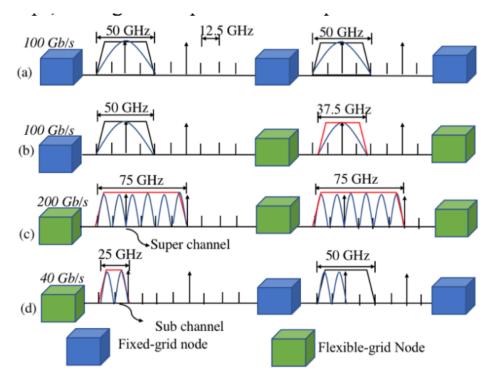

Mixed Grid Topology

Table II: Traffic profiles.					
Traffic Demand (Gb/s)	Profile 1	Profile 2	Profile 3		
40	50%	20%	0%		
100	30%	50%	40%		
200	15%	20%	40%		
400	5%	10%	20%		

Fig.1 Co-existing fixed/flex-grid in NSFNet topology.

Spectrum Allocation in Mixed-grid Network

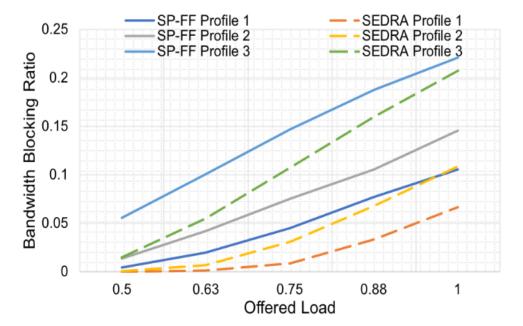
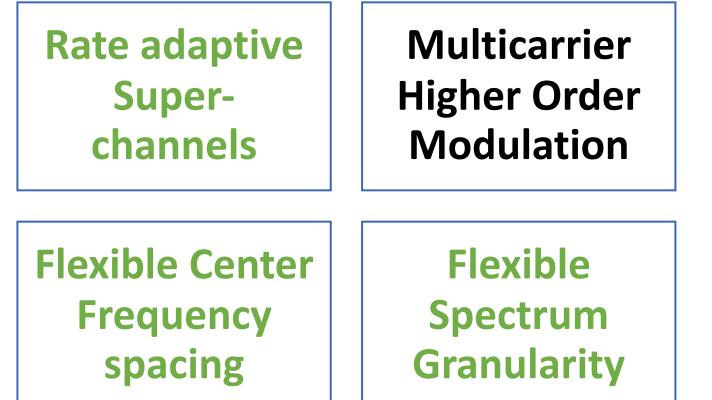
Traffic Demand (Gb/s)	Fixed-Grie	d	Flex-Grid		
	Band width (GHz)	#slots	Bandwidth gap (GHz)	#slots	
40	50	1	25	2	
100	50	1	37.5	3	
200	100	2	75	6	
400	200	4	125	10	

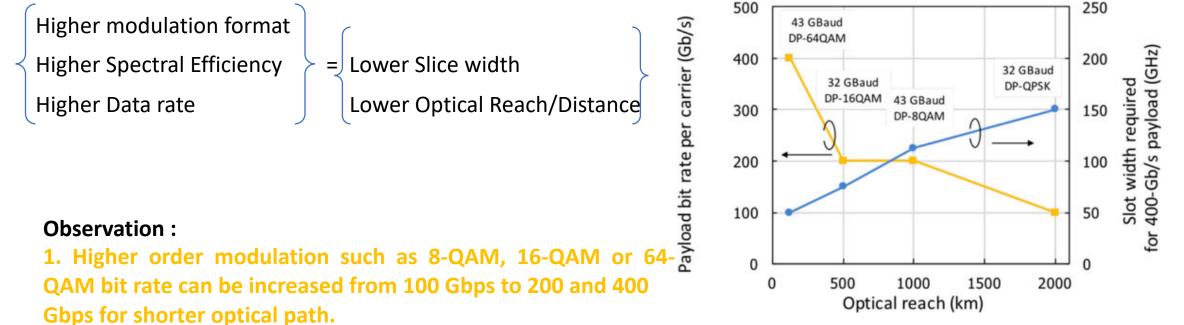
Table I: Spectrum occupation for various bit rates.

Fig. 2 Spectrum assignment in different mixed-grid scenarios.

Results in Terms of BBR

Fig. 3 Bandwidth blocking ratio vs. offered load for Uniform distribution.


Fig. 4 Bandwidth blocking ratio vs. offered load for Poisson distribution.

Elastic Optical Network

Distance Adaptive Modulation Format [2]

1 extra bit can be assigned to the symbol of each sub channel at the expense of roughly a 50 % reduction in optical reach

2. Required slot width for 400 Gbps can be decreased from 150 GHz to 50 GHz.

Payload bit rate per carrier and slot width reduction for 400-Gb/s payload as a function of required optical reach.

Modulation Format Comparison [3]

possible

Baud Rate Is maintained at around 28-32 Gbaud

TABLE I MODULATION FORMAT COMPARISON

	Modulation For	mat Total Data Rate	Indicative OSNR*
	DP-BPSK	50 Gb/s	9 dB
	DP-QPSK	100 Gb/s	12 dB
High OSNR	DP-8QAM	150 Gb/s	16 dB
requirement,	DP-16QAM	200 Gb/s	18.6 dB
implying that	DP-32QAM	250 Gb/s	21.6 dB
long distance	DP-64QAM	300 Gb/s	24.6 dB
transmission			
is not	*For indication	purposes—actual value	s depend on type of

For indication purposes—actual values depend on type of FEC, launch power and other transmission parameters.

An increase in network capacity above the baseline DP-QPSK level will then be possible if a higher QAM than **QPSK** is within this OSNR limit.

Fixed Grid (DP-QPSK)

- 100 Gb/s bitrate comprises Baud rate of 28–32 Gbaud (which includes 25 Gbaud data plus and 12% overhead dependent on the type of FEC used), two transverse light polarizations and QPSK coherent modulation providing a total of 2 bits per symbol.
- Given that the current DP-QPSK coherent modulation has a spectrum of up to about 32 GHz, the additional 18 GHz within a 50 GHz slot is potentially wasted in the fixed grid environment. Reduction from 50 to 37.5 GHz (in flex-grid) gives an immediate improvement in point to point capacity of 33%.

Benefit of Flex-grid [3]

Following would all be capable of a data throughput of 100 Gb/s (after allowing for a 12% FEC overhead):

- 1) DP-QPSK at 28 Gbaud.
- 2) DP-8QAM at 18.6 Gbaud.
- 3) DP-16QAM at 14 Gbaud.
- 4) DP-32QAM at 11.2 Gbaud.
- 5) DP-64QAM at 9.4 Gbaud.

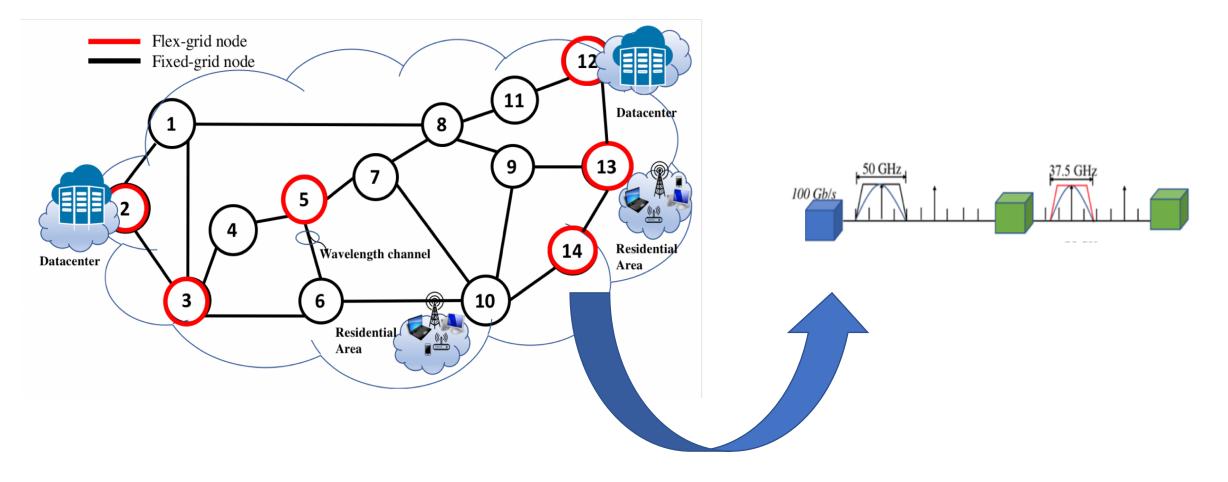
Lower Baud rate occupies lower spectrum which is achievable in flexgrid only.

The advantage of this is that the input bitrate is fixed to 100 Gb/s.

Network Capacity Increase [3]

Elastic modulation is highly network size dependent.

TABLE III NETWORK CAPACITY BENEFITS FOR ELASTIC TRANSCEIVERS AND FLEXGRID ON DIFFERENT SIZE NETWORKS


	% increase for elastic transceivers	% increase for 12.5 GHz flexgrid	% overall increase for elastic transceivers on flexgrid		
BT UK	91	38	163		
PAN EUROPE	55	32	106		
USA ABILENE	29	37	75		

- For the BT UK case 1.91 × 1.38 = 2.64 which is very close to 163%) showing that these advantages are broadly independent on each other. The modulation format optimization increases the bits per hertz for a given spectral slice and the flexgrid optimization increases the number of spectral slices available.
- These are substantial gains and would provide several years of additional growth for a network.

Optical Reach

Gbps	Reach (km)						
Baud Rate	14 GBaud		28 Gbaud		45 GBaud	61GBau d	
Frequency (GHz)	18.75	25	31.25	37.5	50	50	
40 Gbps							
100 Gbps	1100(16 QAM)	1200(16 QAM)		(DP-QPSK)	1400(8 QAM)		
200 Gbps			495 (16 QAM)	540(16 QAM)	630(16 QAM)		
400 Gbps							

Modulation Format for Mixed-Grid

Reference

- 1. Imran, Muhammad, Prince M. Anandarajah, Aleksandra Kaszubowska-Anandarajah, Nicola Sambo, and Luca Potí, "A survey of optical carrier generation techniques for terabit capacity elastic optical networks," *IEEE Communications Surveys & Tutorials* 20, no. 1 (2018): 211-263.
- 2. Jinno, Masahiko et.al, "Elastic Optical Networking: Roles and Benefits in Beyond 100-Gb/s Era," *Journal of Lightwave Technology* 35, no. 5 (2017): 1116-1124.
- 3. Lord, Andrew, Paul Wright, and Abhijit Mitra. "Core networks in the flexgrid era." *Journal of Lightwave Technology* 33, no. 5 (2015): 1126-1135.