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> NSDI’18 Overview
> Overview of optical networking in ACM and USENIX
> Optical networking paper review

> Some takeaways
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NSDI’18 @ Renton, WA
B

> NSDI: Networked System Design and Implementation

> Organized by USENIX
> The USENIX Association is the Advanced Computing Systems Association. It

was founded in 1975 under the name “Unix Users Group,” focusing primarily
on the study and development of Unix and similar systems.
> NSDI’18, 40 papers in 12 topics: new hardware, distributed
systems, traffic management, NFV and hardware, web and
video, performance isolation and scaling, congestion control,
cloud, diagnosis, fault tolerance, physical layer,
configuration management.
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NSDI’18 research spotlights
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NetChain: Scale-Free Sub-RTT Coordination

Xin Jin, Johns Hopkins University; Xiaozhou Li, Barefoot Networks; Haoyu Zhang, Princeton
University; Nate Foster, Cornell University; Jeongkeun Lee, Barefoot Networks;Robert
Soulé, Universita della Svizzera italiana; Changhoon Kim, Barefoot Networks; lon Stoica, UC

Berkeley

Using programmable switches to design new coordination protocol

zkLedger: Privacy-Preserving Auditing for Distributed Ledgers
Neha Narula, MIT Media Lab; Willy Vasquez, University of Texas at Austin; Madars Virza, MIT

Media Lab

Distributed ledgers for financial systems enabled by networking
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https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/jin

- Fastpass: A Centralized “Zero-Queue”
Datacenter Network

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans Fugal. "Fastpass:
A centralized zero-queue datacenter network." ACM SIGCOMM 2014.
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Fastpass concept
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Figure 1: Fastpass arbiter in a two-tier network topology. Figure 2: Structure of the arbiter, showing the timeslot allocator,

path selector, and the client-arbiter communication.

* In Fastpass, a logically centralized arbiter controls all network transfers.

* Because the arbiter knows about all current and scheduled trans- fers, it can
choose timeslots and paths that yield the “zero-queue” property: the arbiter
arranges for each packet to arrive at a switch on the path just as the next link to
the destination becomes available.

e Fastpass incorporates two fast algorithms: the first determines the time at which
each packet should be transmit- ted, while the second determines the path to use
for that packet.

* Network scale time synchronization is required.
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Path selection
B
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Figure 6: Multicore allocation: (1) allocation cores assign packets
to timeslots, (2) path selection cores assign paths, and (3) communi-
cation cores send allocations to endpoints.
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Path selection
B

Example: Packet from Ato B

5us A > Arbiter "A has 1 packet for B"
1-20ps Arbiter timeslot allocation & path selection
15us Arbiter » A "@t=107: A~» B through R1"
no queuing A->B sends data
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Queueing performance
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Figure 7: Switch queue lengths sampled at 100ms intervals on the
top-of-rack switch. The diagram shows measurements from two

different 20 minute experiments: baseline (red) and Fastpass (blue).

Baseline TCP tends to fill switch queues, whereas Fastpass keeps
queue occupancy low.
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Figure 8: Histogram of ping RTTs with background load using
Fastpass (blue) and baseline (red). Fastpass’s RTT is 15.5x smaller,
even with the added overhead of contacting the arbiter.

* Fastpass reduces the median switch queue occupancy from 4.35 Megabytes in the
baseline to just 18 kilobytes with Fastpass, a reduction of a factor of 242 x

* Fastpass reduces the end-to-end round-trip time (RTT) for in- teractive traffic when
the network is heavily loaded by a factor of 15.5%, from a median of 3.56 ms to 230 us
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throughput
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Figure 9: Each connection’s throughput, with a varying number
of senders. Even with Is averaging intervals, baseline TCP flows
achieve widely varying rates. In contrast, for Fastpass (bottom),
with 3, 4, or 5 connections, the throughput curves are on top of one
another. The Fastpass max-min fair timeslot allocator maintains
fﬁ 2 fairness at fine granularity. The lower one- and two-sender Fastpass

throughput is due to Fastpass qdisc overheads (§7.2). UC DAVIS
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Experiment: request queueing
I
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Figure 10: As more requests are handled, the NIC polling rate de-
creases. The resulting queueing delay can be bounded by distributing
request-handling across multiple comm-cores.
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Experiment: communication control overhead
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Figure 11: The arbiter requires 0.5 Gbits/s TX and 0.3 Gbits/s RX
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bandwidth to schedule 150 Gbits/s: around 0.3% of network traffic.

The network overhead of communication with the arbiter is 1-to-500 for request

traffic and 1-to-300 for allocations for the tested workload
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Experiment: path selection
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Figure 12: Path selection routes traffic from 16 racks of 32 endpoints
in <12 ps. Consequently, 10 pathsel-cores would output a routing
every <1.2us, fast enough to support 10 Gbits/s endpoint links.
Error bars show one standard deviation above and below the mean.

* Fig. 12 shows that the processing time increases with network utilization until many
of the nodes reach full degree (32 in the tested topology), at which point the cost of
pre-processing.the graph decreases, and path selection runs slightly faster.
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Experiment: Facebook experiment
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Figure 13: Distribution of the sending and receiving rates of one
production server per 100 microsecond interval over a 60 second
trace.

e Cluster traffic is bursty, but most of the time utilizes a fraction of network capacity
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Experiment: Facebook experiment
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Figure 14: 99th percentile web request ser- Figure 15: Live traffic server load as a func- Figure 16: Median server TCP retransmis-
vice time vs. server load in production traffic. tion of time. Fastpass is shown in the middle sion rate during the live experiment. Fast-
Fastpass shows a similar latency profile as with baseline before and after. The offered pass (middle) maintains a 2.5 x lower rate of
baseline. load oscillates gently with time. retransmissions than baseline (left and right).

* Fig. 14 shows that the 99th percentile web request service time using Fastpass is very
similar to the baseline’s. The three clusters pertain to groups of machines that were

assigned different load by the load-balancer.
* Fig. 15 shows the cluster’s load as the experiment progressed, showing gentle oscillations in
load. Fastpass was able to handle the load without triggering the aggressive load-reduction.
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Some takeaways

* Research approach

* Theoretical analysis: resource allocation.

* Experimental demonstration: system performance.
* Scalability can be evaluated by real-world implementation.
e Distributed systems.

* Touch the boundary of optical networking and L3-L4 networking.
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Thank you for attention!
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