Exploiting Optical-Layer Flexibility for Demand-Responsive Networking

Departure talk and research overview

Zhizhen Zhong

Tsinghua University & UC Davis

zhongzz14@mails.tsinghua.edu.cn , zzzhong@ucdavis.edu

08 June 2018

Networks Lab Group Meeting

Overview: using what flexibility to respond to what demand

UNIVERSITY OF CALIFORNIA

Ongoing tutorial paper on OTSS

1. Introduction

- Need for a transparent fine-grained optical network
- Evolution of optical switching technologies

2. OTSS Architecture

- Data plane
- Control plane
- Enabling technologies

3. OTSS resource allocation schemes

• Routing, time slice and spectrum assignment (RTSA) problem

4. OTSS use cases

- Data center
- Smart grid

1. introduction

- Need for a transparent fine-grained optical network
 - Energy
 - Latency & jitter
 - flexibility

- Evolution of optical switching technologies
- Spectral switching: WDM or flexi-grid
- Temporal switching: OBS, OPS, Fractional Lambda Switching [1]

UNIVERSITY OF CALIFORNIA

[1] M. Baldi, and Y. Ofek. "Fractional Lambda Switching." In ICC 2002.

1. introduction

Fractional lambda switching (aka. time driven switching) [1]

- Universal coordinated time
- Pipeline forwarding

- In FλS , alignment is needed since the propagation delay on links between switches is not a integer multiple of time frames.
- Packet switching is in asynchronous transfer mode.

[1] M. Baldi, and Y. Ofek. "Fractional Lambda Switching." In ICC 2002.

1. introduction

E.g., 16 input/output fibers, each with 16 OC-192 channels	Packet switching (IP/MPLS) e.g., 1000 bit packets	Fractional λ switching - FλS	Whole λ switching
Header processing	10 MHz	0	0
Total data units switched	$2.5 \ 10^9$	$2.0\ 10^7$	0
Switching Control Speed	O(10 MHz)	80 KHz	Static
Allocation granularity	Arbitrary	Arbitrary	Whole Channel (e.g., OC-192)
Service performance	Probabilistic	Deterministic	Deterministic
Number of switching elements	At least 64K	4K (Banyan)	64K (Crossbar)

TABLE 1: MPLS, λ switching and fractional λ switching comparison.

- In FλS , banyan (crossover) switch is adopted. However, in OCS, crossbar switch is adopted
- FλS requires alignment, not really Asynchronous Transfer Mode (ATM), which is still complex.
- In OTSS, we even cancel alignment, as the arrival of time slices can be any time after any propagation. OTSS is really a Asynchronous Transfer Mode (ATM) technology.

2. OTSS architecture overview

Tsinghua University

- (a) Control plane
- (b) Signaling
- (c) Resource allocation
- (d) Spectrum partition
- (e) Node architecture
- Spectrum continuity constraint
- Time-slice propagation constraint
- Spectrum contiguity constraint
- Time-slice contiguity constraint

Therefore, for a traffic request, its used resource must be a **rectangular**.

3. Resource allocation

• Dynamic Routing, time slice and spectrum assignment (RTSA) problem

- Given a traffic profile, evaluate network
 - throughput/latency/resource utilization vs size of spectrum allocated to OTSS.

- Two policies:
 - Use larger spectrum first
 - Use larger time slice first
- Given a traffic profile, evaluate network throughput/latency vs policies.

4. OTSS use cases

• Smart grid

Electrical Packet Switching Planes ... **Optical Fiber**/ λ Switching Planes **Optical Time Slice** Switching Planes c Core Switch Aggregate Switch Edge (E Switch ••• 1 NO DO **Edge Clusters** Pod n-1 Pod 4 Pod n Pod 3 Pod 2 Pod 1 T T Tor Switch (a)

۲

Data center

 Case evaluation: Latency performance under latency upper bound.

 Case evaluation: (Transparent) throughput increase for fattree/torus data center topology.

5. OTSS implementation

• Conduct a simple experimental implementation, to demonstrate time slice switching, and signal quality (eye diagram) after fast optical switch. Evaluate practical parameters like insertion loss, jitter performance of optical switch, etc.

Ideas to be worked on this summer

Figure 6. Delay performance of adaptation algorithm.

When there is a sudden change in
networks, how will different
reconfiguration algorithm performs
under different response time.

[2] V. Chan. "Cognitive Optical Networks." In ICC 2018.

Thank you for attention!

Zhizhen Zhong

Tsinghua University & UC Davis

zhongzz14@mails.tsinghua.edu.cn , zzzhong@ucdavis.edu

08 June 2018

Networks Lab Group Meeting

