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Overview: using what flexibility to respond to what demand
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Ongoing tutorial paper on OTSS
N

1. Introduction
* Need for a transparent fine-grained optical network
* Evolution of optical switching technologies
2. OTSS Architecture
 Data plane
e Control plane
* Enabling technologies
3. OTSS resource allocation schemes
* Routing, time slice and spectrum assignment (RTSA) problem
4. OTSS use cases
* Data center
 Smart grid
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1. introduction

Need for a transparent fine-grained optical network
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Figure-1./llustrative-comparison-between-electrical packet switching-and-optical-circuit switching. <

Evolution of optical switching technologies
Spectral switching: WDM or flexi-grid

Temporal switching: OBS, OPS, Fractional Lambda

Switching [1]
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1. introduction

Fractional lambda switching (aka. time driven switching) [1]

Switch Controller
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In FAS , alignment is
needed since the
propagation delay on
links between
switches is not a
integer multiple of
time frames.

Packet switching is in
asynchronous
transfer mode.
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1. introduction

TABLE 1: MPLS, A SWITCHING AND FRACTIONAL A SWITCHING COMPARISON.

E.g., 16 input/output fibers,
each with 16 OC-192 channels

Packet switching (IP/MPLS)
e.g., 1000 bit packets

Fractional A
switching - FAS

Whole A switching

Header processing 10 MHz 0 0

Total data units switched 2.510° 2.0 10’ 0

Switching Control Speed O(10 MHz) 80 KHz Static

Allocation granularity Arbitrary Arbitrary Whole Channel (e.g., OC-192)
Service performance Probabilistic Deterministic Deterministic

Number of switching elements At least 64K 4K (Banyan) 64K (Crossbar)

* InFAS, banyan (crossover) switch is adopted. However, in OCS, crossbar switch is adopted

* FAS requires alignment, not really Asynchronous Transfer Mode (ATM), which is still complex.
* In OTSS, we even cancel alighment, as the arrival of time slices can be any time after any
propagation. OTSS is really a Asynchronous Transfer Mode (ATM) technology.
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2. OTSS architecture overview
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3. Resource allocation

* Dynamic Routing, time slice and spectrum assignment (RTSA) problem

(c) link spectrum utilization on data plane
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* Two policies:
e Use larger spectrum first
e Use larger time slice first
* Given a traffic profile, evaluate
network throughput/latency vs
policies.
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* Given a traffic profile, evaluate
network
throughput/latency/resource
utilization vs size of spectrum
allocated to OTSS.




4. OTSS use cases

e Smart grid
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e Case evaluation: (Transparent)
throughput increase for fat-
tree/torus data center topology.
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5. OTSS implementation

* Conduct a simple experimental implementation, to demonstrate time slice
switching, and signal quality (eye diagram) after fast optical switch. Evaluate
practical parameters like insertion loss, jitter performance of optical switch, etc.
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ldeas to be worked on this summer
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Figure 6. Delay performance of adaptation algorithm.
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 When there is a sudden change in
networks, how will different
reconfiguration algorithm performs

under different response time.
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Thank you for attention!
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